|
import random |
|
from typing import List |
|
from multiprocessing import Pool |
|
|
|
import numpy as np |
|
import pandas as pd |
|
from scipy.stats import norm |
|
|
|
from bot import Bot, RandomBot, BotFactory |
|
from botfactories import BOT_FACTORIES |
|
from constants import * |
|
from tosstypes import HEADS, TAILS, SIDE, WAGER |
|
|
|
def get_results(round_number: int) -> List[float]: |
|
# Uniform(0, 1) |
|
# p = random.random() |
|
|
|
# Truncated normal |
|
LOC = 0.5 |
|
SCALE = 0.05 |
|
# p: float = np.random.normal(loc=LOC, scale=SCALE) |
|
# Assume that there are N_ROUNDS rounds. |
|
p: float = norm.ppf((round_number + 0.5) / N_ROUNDS, loc=LOC, scale=SCALE) |
|
p = max(p, 0) |
|
p = min(p, 1) |
|
|
|
bots: List[Bot] = [bot(STARTING_MONEY, N_TOSSES, ODDS) for bot in BOT_FACTORIES] |
|
bot_money: List[float] = [STARTING_MONEY for _ in range(len(bots))] |
|
|
|
for toss_number in range(N_TOSSES): |
|
toss_result = HEADS if random.random() < p else TAILS |
|
|
|
for bot_id, bot in enumerate(bots): |
|
resp = bot.next_action() |
|
|
|
if resp is None: |
|
bot.handle_toss(toss_result, 0.0) |
|
else: |
|
assert(resp[WAGER] <= bot_money[bot_id]) |
|
bet_return = (ODDS - 1) * resp[WAGER] if resp[SIDE] == toss_result else -1 * resp[WAGER] |
|
bot.handle_toss(toss_result, bet_return) |
|
bot_money[bot_id] += bet_return |
|
|
|
return bot_money |
|
|
|
def main() -> None: |
|
results: List[List[float]] = [[] for _ in range(len(BOT_FACTORIES))] |
|
print("N_ROUNDS =", N_ROUNDS) |
|
with Pool() as pool: |
|
for bot_money in pool.imap_unordered(get_results, range(N_ROUNDS), ROUNDS_PER_PROCESS): |
|
for bot_id, money in enumerate(bot_money): |
|
results[bot_id].append(money) |
|
|
|
averages = [np.mean(scores) for scores in results] |
|
stddevs = [np.std(scores) for scores in results] |
|
results_df = pd.DataFrame({'names':[bot.__qualname__ for bot in BOT_FACTORIES], |
|
'average':averages, |
|
'median':[np.median(scores) for scores in results], |
|
'0.05':[np.quantile(scores, q=0.05) for scores in results], |
|
'0.95':[np.quantile(scores, q=0.95) for scores in results], |
|
'stddev':stddevs, |
|
'sharpe':[ |
|
(average - 100) / stddev |
|
if stddev > 1e-9 else float("inf") |
|
for average, stddev in zip(averages, stddevs) |
|
]}) |
|
|
|
print(results_df) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |