I hereby claim:
- I am mdbecker on github.
- I am mdbecker (https://keybase.io/mdbecker) on keybase.
- I have a public key whose fingerprint is 3269 BEE3 B3B2 23ED 1478 2F5B 73DE 3334 40FF FBF7
To claim this, I am signing this object:
import hashlib | |
import json | |
import random | |
from datetime import datetime | |
import diffusers | |
import piexif | |
import torch | |
from diffusers import FluxPipeline | |
from PIL import Image |
import mailbox | |
import csv | |
import email.utils | |
from collections import defaultdict | |
import argparse | |
from pathlib import Path | |
from bs4 import BeautifulSoup | |
from tqdm import tqdm | |
# Constants for field names |
""" | |
Fixes https://github.com/scikit-learn/scikit-learn/issues/12052 | |
CalibratedClassifierGroupCV is a drop in replacment for CalibratedClassifierCV that supports GroupKFold cv. | |
This is based off of https://github.com/scikit-learn/scikit-learn/blob/0.24.1/sklearn/calibration.py. | |
If you are using a different version of sklearn, you can make similar modifications to your version. | |
Example usage: | |
``` |
initial_susceptible # defaults to 3,600,000 https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/presentation.py#L200-L206 | |
initial_infected # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L25-L27 | |
initial_recovered # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L34 | |
beta = # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L42-L45 | |
gamma = # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L39 | |
n_days = # User input, default to 60 or something | |
def sir(s, i, r, beta, gama, n): | |
"""The SIR model, one time step.""" | |
s_n = (-beta * s * i) + s |
{"date":{"4":1576826679362,"5":1576826680953,"6":1576826682705,"7":1576826715094,"8":1576826738398,"9":1576826749536,"10":1576826964746,"11":1576827009901,"12":1576827049302,"13":1576827049369,"14":1576827067127,"15":1576827067174,"16":1576827067715,"17":1576827071028,"18":1576827128560,"19":1576827181988,"20":1576827228449,"21":1576827233823,"22":1576827236225,"23":1576827244532,"24":1576827326470,"25":1576827331045,"26":1576827338079,"27":1576827342801,"28":1576827342887,"29":1576827362202,"30":1576827369175,"31":1576827406098,"32":1576827475226,"33":1576827479353,"34":1576827479381,"35":1576827481299,"36":1576827481300,"37":1576827484089,"38":1576827484095,"39":1576827495704,"40":1576827501289,"41":1576827508178,"42":1576827515849,"154":1576832407342,"155":1576832407392,"156":1576832428810,"157":1576832428828,"158":1576832429440,"179":1576840413638,"180":1576840413746,"181":1576840440551,"182":1576840440565,"183":1576840441194,"184":1576841274254,"185":1576841274351,"186":1576841285635,"187":1576841285658, |
from os import getpid, kill | |
from time import sleep | |
import re | |
import signal | |
from notebook.notebookapp import list_running_servers | |
from requests import get | |
from requests.compat import urljoin | |
import ipykernel | |
import json |
import seaborn as sns | |
import numpy as np | |
import matplotlib.pyplot as plt | |
class _MiniBoxPlotter(sns.categorical._ViolinPlotter): | |
def draw_violins(self, ax): | |
"""Draw the violins onto `ax`.""" | |
for i, group_data in enumerate(self.plot_data): |
from sklearn import metrics | |
def binary_cv_metrics(y, preds, m): | |
ACC = metrics.accuracy_score(y,preds) | |
cm = metrics.confusion_matrix(y,preds) | |
m['confusion_matrix'] = cm | |
m['Accuracy'] = ACC | |
m['F1 score'] = metrics.f1_score(y,preds) | |
m['FPR'] = cm[0,1]/(cm[0,:].sum()*1.0) |
I hereby claim:
To claim this, I am signing this object:
{ | |
"metadata": { | |
"name": "Data Philly" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ |