1. Core helpers
- Antibodies
- Skill Recovery Journal
- [B41/B42] Homebound: Spawn Point
2. Maps / Radar 4. MinimapZ
This guide shows you how to run the Hunyuan Video text‑to‑video (T2V) workflow on your M4 MacBook (128 GB RAM with a top‑end GPU). We’ll use the pre‑built dmg file to install ComfyUI (avoiding the need to compile C++ code), set up the workflow in “fast video” mode (reducing inference steps from ~20 to 6–8), and cover downloading and organizing the required model files.
You will install ComfyUI using its pre‑built dmg installer, then configure the Hunyuan Video workflow from the available collection. We focus on using T2V (text‑to‑video) with the “fast video” mode to achieve faster iteration times. With your M4 MacBook’s ample resources, you can experiment confidently while monitoring system performance.
| import hashlib | |
| import json | |
| import random | |
| from datetime import datetime | |
| import diffusers | |
| import piexif | |
| import torch | |
| from diffusers import FluxPipeline | |
| from PIL import Image |
| import mailbox | |
| import csv | |
| import email.utils | |
| from collections import defaultdict | |
| import argparse | |
| from pathlib import Path | |
| from bs4 import BeautifulSoup | |
| from tqdm import tqdm | |
| # Constants for field names |
| """ | |
| Fixes https://github.com/scikit-learn/scikit-learn/issues/12052 | |
| CalibratedClassifierGroupCV is a drop in replacment for CalibratedClassifierCV that supports GroupKFold cv. | |
| This is based off of https://github.com/scikit-learn/scikit-learn/blob/0.24.1/sklearn/calibration.py. | |
| If you are using a different version of sklearn, you can make similar modifications to your version. | |
| Example usage: | |
| ``` |
| initial_susceptible # defaults to 3,600,000 https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/presentation.py#L200-L206 | |
| initial_infected # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L25-L27 | |
| initial_recovered # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L34 | |
| beta = # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L42-L45 | |
| gamma = # https://github.com/CodeForPhilly/chime/blob/2895a9c4ddcf42b3c96bcf7e03a7e2a15f4983de/src/penn_chime/models.py#L39 | |
| n_days = # User input, default to 60 or something | |
| def sir(s, i, r, beta, gama, n): | |
| """The SIR model, one time step.""" | |
| s_n = (-beta * s * i) + s |
| {"date":{"4":1576826679362,"5":1576826680953,"6":1576826682705,"7":1576826715094,"8":1576826738398,"9":1576826749536,"10":1576826964746,"11":1576827009901,"12":1576827049302,"13":1576827049369,"14":1576827067127,"15":1576827067174,"16":1576827067715,"17":1576827071028,"18":1576827128560,"19":1576827181988,"20":1576827228449,"21":1576827233823,"22":1576827236225,"23":1576827244532,"24":1576827326470,"25":1576827331045,"26":1576827338079,"27":1576827342801,"28":1576827342887,"29":1576827362202,"30":1576827369175,"31":1576827406098,"32":1576827475226,"33":1576827479353,"34":1576827479381,"35":1576827481299,"36":1576827481300,"37":1576827484089,"38":1576827484095,"39":1576827495704,"40":1576827501289,"41":1576827508178,"42":1576827515849,"154":1576832407342,"155":1576832407392,"156":1576832428810,"157":1576832428828,"158":1576832429440,"179":1576840413638,"180":1576840413746,"181":1576840440551,"182":1576840440565,"183":1576840441194,"184":1576841274254,"185":1576841274351,"186":1576841285635,"187":1576841285658, |
| from os import getpid, kill | |
| from time import sleep | |
| import re | |
| import signal | |
| from notebook.notebookapp import list_running_servers | |
| from requests import get | |
| from requests.compat import urljoin | |
| import ipykernel | |
| import json |
| import seaborn as sns | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| class _MiniBoxPlotter(sns.categorical._ViolinPlotter): | |
| def draw_violins(self, ax): | |
| """Draw the violins onto `ax`.""" | |
| for i, group_data in enumerate(self.plot_data): |
| from sklearn import metrics | |
| def binary_cv_metrics(y, preds, m): | |
| ACC = metrics.accuracy_score(y,preds) | |
| cm = metrics.confusion_matrix(y,preds) | |
| m['confusion_matrix'] = cm | |
| m['Accuracy'] = ACC | |
| m['F1 score'] = metrics.f1_score(y,preds) | |
| m['FPR'] = cm[0,1]/(cm[0,:].sum()*1.0) |