-
-
Save mdouze/7390d6f6fdc00a6a9f75e361b841d13e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import time | |
import faiss | |
import os | |
################################################################# | |
# I/O functions | |
################################################################# | |
def ivecs_read(fname): | |
a = np.fromfile(fname, dtype='int32') | |
d = a[0] | |
return a.reshape(-1, d + 1)[:, 1:].copy() | |
def fvecs_read(fname): | |
return ivecs_read(fname).view('float32') | |
################################################################# | |
# Main program | |
################################################################# | |
print "load data" | |
xt = fvecs_read("sift1M/sift_learn.fvecs") | |
xb = fvecs_read("sift1M/sift_base.fvecs") | |
xq = fvecs_read("sift1M/sift_query.fvecs") | |
nq, d = xq.shape | |
print "load GT" | |
gt = ivecs_read("sift1M/sift_groundtruth.ivecs") | |
# we need only a StandardGpuResources per GPU | |
res = faiss.StandardGpuResources() | |
################################################################# | |
# Approximate search experiment | |
################################################################# | |
print "============ Approximate search" | |
co = faiss.GpuClonerOptions() | |
# here we are using a 64-byte PQ, so we must set the lookup tables to | |
# 16 bit float (this is due to the limited temporary memory). | |
co.useFloat16 = True | |
co.usePrecomputed = False | |
populated_index_path = 'index' | |
if os.path.exists(populated_index_path): | |
print 'loading', populated_index_path | |
index = faiss.read_index(populated_index_path) # error happens here | |
index = faiss.index_cpu_to_gpu(res, 0, index, co) | |
else: | |
index = faiss.index_factory(d, "IVF4096,PQ64") | |
# faster, uses more memory | |
# index = faiss.index_factory(d, "IVF16384,Flat") | |
index = faiss.index_cpu_to_gpu(res, 0, index, co) | |
print "train" | |
index.train(xt) | |
print "add vectors to index" | |
index.add(xb) | |
print "save index" | |
index_cpu = faiss.index_gpu_to_cpu(index) | |
faiss.write_index(index_cpu, populated_index_path) | |
print "warmup" | |
index.search(xq, 123) | |
print "benchmark" | |
for lnprobe in range(10): | |
nprobe = 1 << lnprobe | |
index.setNumProbes(nprobe) | |
t0 = time.time() | |
D, I = index.search(xq, 100) | |
t1 = time.time() | |
print "nprobe=%4d %.3f s recalls=" % (nprobe, t1 - t0), | |
for rank in 1, 10, 100: | |
n_ok = (I[:, :rank] == gt[:, :1]).sum() | |
print "%.4f" % (n_ok / float(nq)), | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment