Skip to content

Instantly share code, notes, and snippets.

@mdouze
Created March 31, 2017 10:59
Show Gist options
  • Save mdouze/7390d6f6fdc00a6a9f75e361b841d13e to your computer and use it in GitHub Desktop.
Save mdouze/7390d6f6fdc00a6a9f75e361b841d13e to your computer and use it in GitHub Desktop.
import numpy as np
import time
import faiss
import os
#################################################################
# I/O functions
#################################################################
def ivecs_read(fname):
a = np.fromfile(fname, dtype='int32')
d = a[0]
return a.reshape(-1, d + 1)[:, 1:].copy()
def fvecs_read(fname):
return ivecs_read(fname).view('float32')
#################################################################
# Main program
#################################################################
print "load data"
xt = fvecs_read("sift1M/sift_learn.fvecs")
xb = fvecs_read("sift1M/sift_base.fvecs")
xq = fvecs_read("sift1M/sift_query.fvecs")
nq, d = xq.shape
print "load GT"
gt = ivecs_read("sift1M/sift_groundtruth.ivecs")
# we need only a StandardGpuResources per GPU
res = faiss.StandardGpuResources()
#################################################################
# Approximate search experiment
#################################################################
print "============ Approximate search"
co = faiss.GpuClonerOptions()
# here we are using a 64-byte PQ, so we must set the lookup tables to
# 16 bit float (this is due to the limited temporary memory).
co.useFloat16 = True
co.usePrecomputed = False
populated_index_path = 'index'
if os.path.exists(populated_index_path):
print 'loading', populated_index_path
index = faiss.read_index(populated_index_path) # error happens here
index = faiss.index_cpu_to_gpu(res, 0, index, co)
else:
index = faiss.index_factory(d, "IVF4096,PQ64")
# faster, uses more memory
# index = faiss.index_factory(d, "IVF16384,Flat")
index = faiss.index_cpu_to_gpu(res, 0, index, co)
print "train"
index.train(xt)
print "add vectors to index"
index.add(xb)
print "save index"
index_cpu = faiss.index_gpu_to_cpu(index)
faiss.write_index(index_cpu, populated_index_path)
print "warmup"
index.search(xq, 123)
print "benchmark"
for lnprobe in range(10):
nprobe = 1 << lnprobe
index.setNumProbes(nprobe)
t0 = time.time()
D, I = index.search(xq, 100)
t1 = time.time()
print "nprobe=%4d %.3f s recalls=" % (nprobe, t1 - t0),
for rank in 1, 10, 100:
n_ok = (I[:, :rank] == gt[:, :1]).sum()
print "%.4f" % (n_ok / float(nq)),
print
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment