Created
June 9, 2019 21:11
-
-
Save meddulla/e94176cea965afcb23ff3b15d6958374 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| """ | |
| Copyright Google Inc. 2016 | |
| Licensed under the Apache License, Version 2.0 (the "License"); | |
| you may not use this file except in compliance with the License. | |
| You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software | |
| distributed under the License is distributed on an "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| See the License for the specific language governing permissions and | |
| limitations under the License. | |
| """ | |
| import os | |
| import sys | |
| import pickle | |
| import itertools | |
| from math import sqrt | |
| from operator import add | |
| from os.path import join, isfile, dirname | |
| from pyspark import SparkContext, SparkConf, SQLContext | |
| from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating | |
| from pyspark.sql.types import StructType, StructField, StringType, FloatType | |
| # MAKE EDITS HERE | |
| CLOUDSQL_INSTANCE_IP = '' # <---- CHANGE (database server IP) | |
| CLOUDSQL_DB_NAME = 'recommendation_spark' # <--- leave as-is | |
| CLOUDSQL_USER = 'root' # <--- leave as-is | |
| CLOUDSQL_PWD = '' # <---- CHANGE | |
| # DO NOT MAKE EDITS BELOW | |
| conf = SparkConf().setAppName("train_model") | |
| sc = SparkContext(conf=conf) | |
| sqlContext = SQLContext(sc) | |
| jdbcDriver = 'com.mysql.jdbc.Driver' | |
| jdbcUrl = 'jdbc:mysql://%s:3306/%s?user=%s&password=%s' % (CLOUDSQL_INSTANCE_IP, CLOUDSQL_DB_NAME, CLOUDSQL_USER, CLOUDSQL_PWD) | |
| # checkpointing helps prevent stack overflow errors | |
| sc.setCheckpointDir('checkpoint/') | |
| # Read the ratings and accommodations data from Cloud SQL | |
| dfRates = sqlContext.read.format('jdbc').options(driver=jdbcDriver, url=jdbcUrl, dbtable='Rating', useSSL='false').load() | |
| dfAccos = sqlContext.read.format('jdbc').options(driver=jdbcDriver, url=jdbcUrl, dbtable='Accommodation', useSSL='false').load() | |
| print("read ...") | |
| # train the model | |
| model = ALS.train(dfRates.rdd, 20, 20) # you could tune these numbers, but these are reasonable choices | |
| print("trained ...") | |
| # use this model to predict what the user would rate accommodations that she has not rated | |
| allPredictions = None | |
| for USER_ID in range(0, 100): | |
| dfUserRatings = dfRates.filter(dfRates.userId == USER_ID).rdd.map(lambda r: r.accoId).collect() | |
| rddPotential = dfAccos.rdd.filter(lambda x: x[0] not in dfUserRatings) | |
| pairsPotential = rddPotential.map(lambda x: (USER_ID, x[0])) | |
| predictions = model.predictAll(pairsPotential).map(lambda p: (str(p[0]), str(p[1]), float(p[2]))) | |
| predictions = predictions.takeOrdered(5, key=lambda x: -x[2]) # top 5 | |
| print("predicted for user={0}".format(USER_ID)) | |
| if (allPredictions == None): | |
| allPredictions = predictions | |
| else: | |
| allPredictions.extend(predictions) | |
| # write them | |
| schema = StructType([StructField("userId", StringType(), True), StructField("accoId", StringType(), True), StructField("prediction", FloatType(), True)]) | |
| dfToSave = sqlContext.createDataFrame(allPredictions, schema) | |
| dfToSave.write.jdbc(url=jdbcUrl, table='Recommendation', mode='overwrite') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment