Skip to content

Instantly share code, notes, and snippets.

View meetps's full-sized avatar
IDDQD

Meet Shah meetps

IDDQD
View GitHub Profile
@calderonroberto
calderonroberto / app.py
Last active June 1, 2022 20:06
Flask Redis Example
#!/bin/python
# Dependencies:
# pip install flask
# pip install redis
from flask import Flask
from flask import request
import flask
import redis
@hnykda
hnykda / keras_prediction.py
Last active August 21, 2020 01:33
Predicting sequences of vectors (regression) in Keras using RNN - LSTM (danielhnyk.cz)
import pandas as pd
from random import random
flow = (list(range(1,10,1)) + list(range(10,1,-1)))*100
pdata = pd.DataFrame({"a":flow, "b":flow})
pdata.b = pdata.b.shift(9)
data = pdata.iloc[10:] * random() # some noise
import numpy as np
@ebenolson
ebenolson / Dockerfile
Created November 9, 2015 17:23
openslide dockerfile
FROM ubuntu:trusty
########################################
#
# openslide 3.4.1 image based on Ubuntu:trusty
#
#######################################
# Set Locale
@shagunsodhani
shagunsodhani / Batch Normalization.md
Last active July 25, 2023 18:07
Notes for "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" paper

The Batch Normalization paper describes a method to address the various issues related to training of Deep Neural Networks. It makes normalization a part of the architecture itself and reports significant improvements in terms of the number of iterations required to train the network.

Issues With Training Deep Neural Networks

Internal Covariate shift

Covariate shift refers to the change in the input distribution to a learning system. In the case of deep networks, the input to each layer is affected by parameters in all the input layers. So even small changes to the network get amplified down the network. This leads to change in the input distribution to internal layers of the deep network and is known as internal covariate shift.

It is well established that networks converge faster if the inputs have been whitened (ie zero mean, unit variances) and are uncorrelated and internal covariate shift leads to just the opposite.

@kukuruza
kukuruza / gist_cifar10_train.py
Last active November 4, 2024 17:36
Tensorflow: visualize convolutional filters (conv1) in Cifar10 model
from math import sqrt
def put_kernels_on_grid (kernel, pad = 1):
'''Visualize conv. filters as an image (mostly for the 1st layer).
Arranges filters into a grid, with some paddings between adjacent filters.
Args:
kernel: tensor of shape [Y, X, NumChannels, NumKernels]
pad: number of black pixels around each filter (between them)
@kastnerkyle
kastnerkyle / pascalvoc.py
Last active June 4, 2018 21:41
Wrapper to read pascal voc data
# Author: Kyle Kastner # License: BSD 3-Clause # For a reference on parallel processing in Python see tutorial by David Beazley # http://www.slideshare.net/dabeaz/an-introduction-to-python-concurrency # Loosely based on IBM example # http://www.ibm.com/developerworks/aix/library/au-threadingpython/ # If you want to download all the PASCAL VOC data, use the following in bash... """ #! /bin/bash # 2008 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar # 2009 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar # 2010 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar # 2011 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar # 2012 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar # Latest devkit wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar """ try: import Queue except ImportError: import queue as Queue import threading import ti
@dannguyen
dannguyen / README.md
Last active July 29, 2025 14:26
Using Python 3.x and Google Cloud Vision API to OCR scanned documents to extract structured data

Using Python 3 + Google Cloud Vision API's OCR to extract text from photos and scanned documents

Just a quickie test in Python 3 (using Requests) to see if Google Cloud Vision can be used to effectively OCR a scanned data table and preserve its structure, in the way that products such as ABBYY FineReader can OCR an image and provide Excel-ready output.

The short answer: No. While Cloud Vision provides bounding polygon coordinates in its output, it doesn't provide it at the word or region level, which would be needed to then calculate the data delimiters.

On the other hand, the OCR quality is pretty good, if you just need to identify text anywhere in an image, without regards to its physical coordinates. I've included two examples:

####### 1. A low-resolution photo of road signs

@benhoyt
benhoyt / ngrams.py
Created May 12, 2016 15:34
Print most frequent N-grams in given file
"""Print most frequent N-grams in given file.
Usage: python ngrams.py filename
Problem description: Build a tool which receives a corpus of text,
analyses it and reports the top 10 most frequent bigrams, trigrams,
four-grams (i.e. most frequently occurring two, three and four word
consecutive combinations).
NOTES
@bast
bast / jekyll-installation-arch.sh
Last active July 17, 2025 15:00
Jekyll installation on Arch Linux.
sudo pacman -S ruby ruby-rdoc gcc make
gem update --user-install
gem install jekyll --user-install
# finally add $HOME/.gem/ruby/2.7.0/bin to your PATH variable