Last active
September 28, 2023 15:16
-
-
Save mehdidc/ec577a2f718646e176864a45f6ec9cb8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import ast | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import braceexpand | |
from dataclasses import dataclass | |
from multiprocessing import Value | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torchvision.datasets as datasets | |
import webdataset as wds | |
from PIL import Image | |
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, IterableDataset, get_worker_info | |
from torch.utils.data.distributed import DistributedSampler | |
from webdataset.filters import _shuffle | |
from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample | |
_SHARD_SHUFFLE_SIZE = 2000 | |
_SHARD_SHUFFLE_INITIAL = 500 | |
_SAMPLE_SHUFFLE_SIZE = 5000 | |
_SAMPLE_SHUFFLE_INITIAL = 1000 | |
class SharedEpoch: | |
def __init__(self, epoch: int = 0): | |
self.shared_epoch = Value('i', epoch) | |
def set_value(self, epoch): | |
self.shared_epoch.value = epoch | |
def get_value(self): | |
return self.shared_epoch.value | |
@dataclass | |
class DataInfo: | |
dataloader: DataLoader | |
sampler: DistributedSampler = None | |
shared_epoch: SharedEpoch = None | |
def set_epoch(self, epoch): | |
if self.shared_epoch is not None: | |
self.shared_epoch.set_value(epoch) | |
if self.sampler is not None and isinstance(self.sampler, DistributedSampler): | |
self.sampler.set_epoch(epoch) | |
def expand_urls(urls, weights=None): | |
if weights is None: | |
expanded_urls = wds.shardlists.expand_urls(urls) | |
return expanded_urls, None | |
if isinstance(urls, str): | |
urllist = urls.split("::") | |
weights = weights.split('::') | |
assert len(weights) == len(urllist),\ | |
f"Expected the number of data components ({len(urllist)}) and weights({len(weights)}) to match." | |
weights = [float(weight) for weight in weights] | |
all_urls, all_weights = [], [] | |
for url, weight in zip(urllist, weights): | |
expanded_url = list(braceexpand.braceexpand(url)) | |
expanded_weights = [weight for _ in expanded_url] | |
all_urls.extend(expanded_url) | |
all_weights.extend(expanded_weights) | |
return all_urls, all_weights | |
else: | |
all_urls = list(urls) | |
return all_urls, weights | |
def get_dataset_size(shards): | |
shards_list, _ = expand_urls(shards) | |
dir_path = os.path.dirname(shards_list[0]) | |
sizes_filename = os.path.join(dir_path, 'sizes.json') | |
len_filename = os.path.join(dir_path, '__len__') | |
if os.path.exists(sizes_filename): | |
sizes = json.load(open(sizes_filename, 'r')) | |
total_size = sum([int(sizes[os.path.basename(shard)]) for shard in shards_list]) | |
elif os.path.exists(len_filename): | |
# FIXME this used to be eval(open(...)) but that seemed rather unsafe | |
total_size = ast.literal_eval(open(len_filename, 'r').read()) | |
else: | |
total_size = None # num samples undefined | |
# some common dataset sizes (at time of authors last download) | |
# CC3M (train): 2905954 | |
# CC12M: 10968539 | |
# LAION-400M: 407332084 | |
# LAION-2B (english): 2170337258 | |
num_shards = len(shards_list) | |
return total_size, num_shards | |
def filter_no_caption_or_no_image(sample): | |
has_caption = ('txt' in sample) | |
has_image = ('png' in sample or 'jpg' in sample or 'jpeg' in sample or 'webp' in sample) | |
return has_caption and has_image | |
def log_and_continue(exn): | |
"""Call in an exception handler to ignore any exception, issue a warning, and continue.""" | |
logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') | |
return True | |
def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): | |
"""Return function over iterator that groups key, value pairs into samples. | |
:param keys: function that splits the key into key and extension (base_plus_ext) | |
:param lcase: convert suffixes to lower case (Default value = True) | |
""" | |
current_sample = None | |
for filesample in data: | |
assert isinstance(filesample, dict) | |
fname, value = filesample["fname"], filesample["data"] | |
prefix, suffix = keys(fname) | |
if prefix is None: | |
continue | |
if lcase: | |
suffix = suffix.lower() | |
# FIXME webdataset version throws if suffix in current_sample, but we have a potential for | |
# this happening in the current LAION400m dataset if a tar ends with same prefix as the next | |
# begins, rare, but can happen since prefix aren't unique across tar files in that dataset | |
if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: | |
if valid_sample(current_sample): | |
yield current_sample | |
current_sample = dict(__key__=prefix, __url__=filesample["__url__"]) | |
if suffixes is None or suffix in suffixes: | |
current_sample[suffix] = value | |
if valid_sample(current_sample): | |
yield current_sample | |
def tarfile_to_samples_nothrow(src, handler=log_and_continue): | |
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw | |
streams = url_opener(src, handler=handler) | |
files = tar_file_expander(streams, handler=handler) | |
samples = group_by_keys_nothrow(files, handler=handler) | |
return samples | |
@dataclass | |
class DataInfo: | |
dataloader: DataLoader | |
sampler: DistributedSampler = None | |
shared_epoch: SharedEpoch = None | |
def set_epoch(self, epoch): | |
if self.shared_epoch is not None: | |
self.shared_epoch.set_value(epoch) | |
if self.sampler is not None and isinstance(self.sampler, DistributedSampler): | |
self.sampler.set_epoch(epoch) | |
def pytorch_worker_seed(increment=0): | |
"""get dataloader worker seed from pytorch""" | |
worker_info = get_worker_info() | |
if worker_info is not None: | |
# favour using the seed already created for pytorch dataloader workers if it exists | |
seed = worker_info.seed | |
if increment: | |
# space out seed increments so they can't overlap across workers in different iterations | |
seed += increment * max(1, worker_info.num_workers) | |
return seed | |
# fallback to wds rank based seed | |
return wds.utils.pytorch_worker_seed() | |
class detshuffle2(wds.PipelineStage): | |
def __init__( | |
self, | |
bufsize=1000, | |
initial=100, | |
seed=0, | |
epoch=-1, | |
): | |
self.bufsize = bufsize | |
self.initial = initial | |
self.seed = seed | |
self.epoch = epoch | |
def run(self, src): | |
if isinstance(self.epoch, SharedEpoch): | |
epoch = self.epoch.get_value() | |
else: | |
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) | |
# situation as different workers may wrap at different times (or not at all). | |
self.epoch += 1 | |
epoch = self.epoch | |
rng = random.Random() | |
if self.seed < 0: | |
# If seed is negative, we use the worker's seed, this will be different across all nodes/workers | |
seed = pytorch_worker_seed(epoch) | |
else: | |
# This seed to be deterministic AND the same across all nodes/workers in each epoch | |
seed = self.seed + epoch | |
rng.seed(seed) | |
return _shuffle(src, self.bufsize, self.initial, rng) | |
class ResampledShards2(IterableDataset): | |
"""An iterable dataset yielding a list of urls.""" | |
def __init__( | |
self, | |
urls, | |
weights=None, | |
nshards=sys.maxsize, | |
worker_seed=None, | |
deterministic=False, | |
epoch=-1, | |
): | |
"""Sample shards from the shard list with replacement. | |
:param urls: a list of URLs as a Python list or brace notation string | |
""" | |
super().__init__() | |
urls, weights = expand_urls(urls, weights) | |
self.urls = urls | |
self.weights = weights | |
if self.weights is not None: | |
assert len(self.urls) == len(self.weights),\ | |
f"Number of urls {len(self.urls)} and weights {len(self.weights)} should match." | |
assert isinstance(self.urls[0], str) | |
self.nshards = nshards | |
self.rng = random.Random() | |
self.worker_seed = worker_seed | |
self.deterministic = deterministic | |
self.epoch = epoch | |
def __iter__(self): | |
"""Return an iterator over the shards.""" | |
if isinstance(self.epoch, SharedEpoch): | |
epoch = self.epoch.get_value() | |
else: | |
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) | |
# situation as different workers may wrap at different times (or not at all). | |
self.epoch += 1 | |
epoch = self.epoch | |
if self.deterministic: | |
# reset seed w/ epoch if deterministic | |
if self.worker_seed is None: | |
# pytorch worker seed should be deterministic due to being init by arg.seed + rank + worker id | |
seed = pytorch_worker_seed(epoch) | |
else: | |
seed = self.worker_seed() + epoch | |
self.rng.seed(seed) | |
for _ in range(self.nshards): | |
if self.weights is None: | |
yield dict(url=self.rng.choice(self.urls)) | |
else: | |
yield dict(url=self.rng.choices(self.urls, weights=self.weights, k=1)[0]) | |
def get_wds_dataset( | |
data, | |
preprocess_img, preprocess_label, | |
is_train, epoch=0, floor=False, | |
resampled=False, num_samples=None, data_upsampling_factors=None, | |
seed=0, batch_size=128, workers=4, world_size=1, | |
img="png;jpg;jpeg;webp", label="txt", | |
shard_shuffle_size=_SHARD_SHUFFLE_SIZE, shard_shuffle_initial=_SHARD_SHUFFLE_INITIAL, | |
sample_shuffle_size=_SAMPLE_SHUFFLE_SIZE, sample_shuffle_initial=_SAMPLE_SHUFFLE_INITIAL, | |
): | |
input_shards = data | |
assert input_shards is not None | |
num_shards = None | |
if num_samples is None: | |
num_samples, num_shards = get_dataset_size(input_shards) | |
if not num_samples: | |
raise RuntimeError( | |
'Currently, the number of dataset samples must be specified for the training dataset. ' | |
'Please specify it via `num-samples` if no dataset length info is present.') | |
shared_epoch = SharedEpoch(epoch=epoch) # create a shared epoch store to sync epoch to dataloader worker proc | |
if resampled: | |
pipeline = [ResampledShards2( | |
input_shards, | |
weights=data_upsampling_factors, | |
deterministic=True, | |
epoch=shared_epoch, | |
)] | |
else: | |
assert data_upsampling_factors is None | |
pipeline = [wds.SimpleShardList(input_shards)] | |
# at this point we have an iterator over all the shards | |
if is_train: | |
if not resampled: | |
pipeline.extend([ | |
detshuffle2( | |
bufsize=shard_shuffle_size, | |
initial=shared_shuffle_initial, | |
seed=seed, | |
epoch=shared_epoch, | |
), | |
wds.split_by_node, | |
wds.split_by_worker, | |
]) | |
pipeline.extend([ | |
# at this point, we have an iterator over the shards assigned to each worker at each node | |
tarfile_to_samples_nothrow, # wds.tarfile_to_samples(handler=log_and_continue), | |
wds.shuffle( | |
bufsize=sample_shuffle_size, | |
initial=sample_shuffle_initial, | |
), | |
]) | |
else: | |
pipeline.extend([ | |
wds.split_by_worker, | |
# at this point, we have an iterator over the shards assigned to each worker | |
wds.tarfile_to_samples(handler=log_and_continue), | |
]) | |
pipeline.extend([ | |
wds.select(filter_no_caption_or_no_image), | |
wds.decode("pilrgb", handler=log_and_continue), | |
wds.rename(image=img, label=label), | |
wds.map_dict(image=preprocess_img, label=preprocess_label), | |
wds.to_tuple("image", "label"), | |
wds.batched(batch_size, partial=not is_train) | |
]) | |
dataset = wds.DataPipeline(*pipeline) | |
if is_train: | |
if not resampled: | |
num_shards = num_shards or len(expand_urls(input_shards)[0]) | |
assert num_shards >= workers * world_size, 'number of shards must be >= total workers' | |
# roll over and repeat a few samples to get same number of full batches on each node | |
round_fn = math.floor if floor else math.ceil | |
global_batch_size = batch_size * world_size | |
num_batches = round_fn(num_samples / global_batch_size) | |
num_workers = max(1, workers) | |
num_worker_batches = round_fn(num_batches / num_workers) # per dataloader worker | |
num_batches = num_worker_batches * num_workers | |
num_samples = num_batches * global_batch_size | |
dataset = dataset.with_epoch(num_worker_batches) # each worker is iterating over this | |
else: | |
# last batches are partial, eval is done on single (master) node | |
num_batches = math.ceil(num_samples / batch_size) | |
dataloader = wds.WebLoader( | |
dataset, | |
batch_size=None, | |
shuffle=False, | |
num_workers=workers, | |
persistent_workers=workers > 0, | |
) | |
return dataloader | |
if __name_ == "__main__": | |
from torchvision import transforms | |
tf = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]) | |
]) | |
dl = get_wds_dataset( | |
"<PATH>", | |
preprocess_img=tf, | |
preprocess_label=lambda x: x, | |
is_train=True, | |
epoch=0, | |
batch_size=4, | |
num_samples=1_000_000, | |
resampled=True, | |
) | |
for x, y in dl: | |
print(x.shape,y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment