Created
January 21, 2023 17:36
-
-
Save mehdip2007/f6abef968843f4864b49375133430b20 to your computer and use it in GitHub Desktop.
Migration from Oracle to Hive issue
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark import SparkContext, SparkConf | |
from pyspark.sql import SparkSession, Row, HiveContext | |
from pyspark.sql.functions import * | |
from pyspark.sql.types import * | |
import multiprocessing as mp | |
conf = SparkConf().setAll([('spark.executor.cores', '4'), | |
('spark.cores.max', '8'), | |
("spark.yarn.am.memory", "8g"), | |
("spark.driver.memoryOverhead", "8g"), | |
("spark.executor.instances", "10"), | |
('spark.dynamicAllocation.enabled', 'true'), | |
("spark.shuffle.service.enabled", "true"), | |
("spark.dynamicAllocation.maxExecutors", 10), | |
("spark.dynamicAllocation.minExecutors", 10), | |
("spark.rapids.sql.enabled", 'true'), | |
("spark.rapids.sql.decimalType.enabled", 'true'), | |
("spark.driver.memory", "5g"), | |
("spark.executor.memory", "6g"), | |
("spark.kyroserializer.buffer.max", "512mb")]) | |
sc = SparkContext(conf=conf) | |
spark = SparkSession \ | |
.builder \ | |
.appName("Move Data from Oracle to Hive") \ | |
.enableHiveSupport() \ | |
.getOrCreate() | |
bounds = "(select /*+parallel(128) */ MIN(sbrp_id) as min, MAX(sbrp_id) as max FROM temp_schema.z_rabani_CIP_REV_TOT_mnth) bounds" | |
db_driver = 'oracle.jdbc.driver.OracleDriver' | |
db_url = 'jdbc:oracle:thin:user/pass@IP:1521/SID' | |
conn_properties = {'user': 'username', 'password': 'pass', 'driver': 'oracle.jdbc.driver.OracleDriver'} | |
partitions = mp.cpu_count() * 10 | |
bounds_result = spark.read.jdbc(url=db_url, table=bounds, properties=conn_properties).collect()[0] | |
bounds_result | |
Row(MIN=Decimal('11000049258014.0000000000'), MAX=Decimal('9911000203959074.0000000000')) | |
# to get the types from oracle | |
t_types_query = "(select COLUMN_NAME, DATA_LENGTH, data_type from all_tab_cols where OWNER = 'TEMP_SCHEMA' and TABLE_NAME = 'Z_RABANI_CIP_REV_TOT_MNTH')" | |
t_types | |
DataFrame[COLUMN_NAME: string, DATA_LENGTH: decimal(38,10), DATA_TYPE: string] | |
t_types.show(t_types.count(), truncate=False) | |
+------------------------------+--------------+---------+ | |
|COLUMN_NAME |DATA_LENGTH |DATA_TYPE| | |
+------------------------------+--------------+---------+ | |
|MONTH_KEY |22.0000000000 |NUMBER | | |
|SBRP_ID |22.0000000000 |NUMBER | | |
|ACCS_MTHD_ID |22.0000000000 |NUMBER | | |
|ENCRYPTED_ACCS_MTHD_ID |172.0000000000|VARCHAR2 | | |
|SBRP_STAT_ID |22.0000000000 |NUMBER | | |
|SBRP_TYP_ID |22.0000000000 |NUMBER | | |
|BRTH_DT |22.0000000000 |NUMBER | | |
|ACTVN_DT |22.0000000000 |NUMBER | | |
|GNDR_ID |22.0000000000 |NUMBER | | |
|USIM_FLAG |22.0000000000 |NUMBER | | |
|RGTRN_PROVNC_ID |22.0000000000 |NUMBER | | |
|RGTRN_CITY_ID |22.0000000000 |NUMBER | | |
|LST_HNDST_ID |22.0000000000 |NUMBER | | |
|LST_HNDST_MODL_ID |32.0000000000 |VARCHAR2 | | |
|EXMPTION_FEE |22.0000000000 |NUMBER | | |
|DATA_REV |22.0000000000 |NUMBER | | |
|DATA_PAGY_REV |22.0000000000 |NUMBER | | |
|DATA_PKG_REV |22.0000000000 |NUMBER | | |
|SMS_REV |22.0000000000 |NUMBER | | |
|VOICE_REV |22.0000000000 |NUMBER | | |
|VAS_REV |22.0000000000 |NUMBER | | |
|PKG_REV |22.0000000000 |NUMBER | | |
|ROAM_REV |22.0000000000 |NUMBER | | |
|INTL_REV |22.0000000000 |NUMBER | | |
|ABONMAN |22.0000000000 |NUMBER | | |
|CRM_SVC_REV |22.0000000000 |NUMBER | | |
|BAL_TRNSFR_AMT |22.0000000000 |NUMBER | | |
|CIP_REV |22.0000000000 |NUMBER | | |
|CIP_AVG_REV_12MONTH |22.0000000000 |NUMBER | | |
|AVG_TOT_12 |22.0000000000 |NUMBER | | |
|TOT_REV |22.0000000000 |NUMBER | | |
|ACCOM_DT |22.0000000000 |NUMBER | | |
|CNTN_MNTH_REV_CNT |22.0000000000 |NUMBER | | |
|CIP_REV_FLG |22.0000000000 |NUMBER | | |
|CIP_TOT_FLG |22.0000000000 |NUMBER | | |
|LOAD_DT |7.0000000000 |DATE | | |
|CIP_LVL_REV_ID |22.0000000000 |NUMBER | | |
|CIP_LVL_TOT_ID |22.0000000000 |NUMBER | | |
|TOP1MOST_USED_CELL |22.0000000000 |NUMBER | | |
|TOP1MOST_USED_CELL_BY_CL_DUR |22.0000000000 |NUMBER | | |
|TOP1MOST_USED_CELL_BY_DATA_VOL|22.0000000000 |NUMBER | | |
|DATA_USG_PAYG_VOL |22.0000000000 |NUMBER | | |
|PKG_DATA_USG_VOL |22.0000000000 |NUMBER | | |
|VOI_PAYG_DUR |22.0000000000 |NUMBER | | |
|VOI_PKG_DUR |22.0000000000 |NUMBER | | |
|SMS_PKG_CNT |22.0000000000 |NUMBER | | |
|SMS_PAYG_CNT |22.0000000000 |NUMBER | | |
+------------------------------+--------------+---------+ | |
q = "(select * from temp_schema.z_rabani_cip_rev_tot_mnth)" | |
df = spark.read.jdbc(url=db_url, table=q \ | |
,numPartitions=partitions, \ | |
column='sbrp_id', \ | |
lowerBound=bounds_result.MIN, \ | |
upperBound= bounds_result.MAX + 1, \ | |
properties=conn_properties) | |
# also tried different casting but it wont work | |
df2 = df.withColumn("MONTH_KEY", col("MONTH_KEY").cast(StringType())) \ | |
.withColumn("SBRP_ID", col("SBRP_ID").cast(StringType())) \ | |
.withColumn("ACCS_MTHD_ID", col("ACCS_MTHD_ID").cast(StringType())) \ | |
.withColumn("ENCRYPTED_ACCS_MTHD_ID", col("ENCRYPTED_ACCS_MTHD_ID").cast(StringType())) \ | |
.withColumn("SBRP_STAT_ID", col("SBRP_STAT_ID").cast(StringType())) \ | |
.withColumn("SBRP_TYP_ID", col("SBRP_TYP_ID").cast(StringType())) \ | |
.withColumn("BRTH_DT", col("BRTH_DT").cast(StringType())) \ | |
.withColumn("ACTVN_DT", col("ACTVN_DT").cast(StringType())) \ | |
.withColumn("GNDR_ID", col("GNDR_ID").cast(StringType())) \ | |
.withColumn("USIM_FLAG", col("USIM_FLAG").cast(StringType())) \ | |
.withColumn("RGTRN_PROVNC_ID", col("RGTRN_PROVNC_ID").cast(StringType())) \ | |
.withColumn("RGTRN_CITY_ID", col("RGTRN_CITY_ID").cast(StringType())) \ | |
.withColumn("LST_HNDST_ID", col("LST_HNDST_ID").cast(StringType())) \ | |
.withColumn("LST_HNDST_MODL_ID", col("LST_HNDST_MODL_ID").cast(StringType())) \ | |
.withColumn("EXMPTION_FEE", col("EXMPTION_FEE").cast(StringType())) \ | |
.withColumn("DATA_REV", col("DATA_REV").cast(StringType())) \ | |
.withColumn("DATA_PAGY_REV", col("DATA_PAGY_REV").cast(StringType())) \ | |
.withColumn("DATA_PKG_REV", col("DATA_PKG_REV").cast(StringType())) \ | |
.withColumn("SMS_REV", col("SMS_REV").cast(StringType())) \ | |
.withColumn("VOICE_REV", col("VOICE_REV").cast(StringType())) \ | |
.withColumn("VAS_REV", col("VAS_REV").cast(StringType())) \ | |
.withColumn("PKG_REV", col("PKG_REV").cast(StringType())) \ | |
.withColumn("ROAM_REV", col("ROAM_REV").cast(StringType())) \ | |
.withColumn("INTL_REV", col("INTL_REV").cast(StringType())) \ | |
.withColumn("ABONMAN", col("ABONMAN").cast(StringType())) \ | |
.withColumn("CRM_SVC_REV", col("CRM_SVC_REV").cast(StringType())) \ | |
.withColumn("BAL_TRNSFR_AMT", col("BAL_TRNSFR_AMT").cast(StringType())) \ | |
.withColumn("CIP_REV", col("CIP_REV").cast(StringType())) \ | |
.withColumn("CIP_AVG_REV_12MONTH", col("CIP_AVG_REV_12MONTH").cast(StringType())) \ | |
.withColumn("AVG_TOT_12", col("AVG_TOT_12").cast(StringType())) \ | |
.withColumn("TOT_REV", col("TOT_REV").cast(StringType())) \ | |
.withColumn("ACCOM_DT", col("ACCOM_DT").cast(StringType())) \ | |
.withColumn("CNTN_MNTH_REV_CNT", col("CNTN_MNTH_REV_CNT").cast(StringType())) \ | |
.withColumn("CIP_REV_FLG", col("CIP_REV_FLG").cast(StringType())) \ | |
.withColumn("CIP_TOT_FLG", col("CIP_TOT_FLG").cast(StringType())) \ | |
.withColumn("LOAD_DT", col("LOAD_DT").cast(StringType())) \ | |
.withColumn("CIP_LVL_REV_ID", col("CIP_LVL_REV_ID").cast(StringType())) \ | |
.withColumn("CIP_LVL_TOT_ID", col("CIP_LVL_TOT_ID").cast(StringType())) \ | |
.withColumn("TOP1MOST_USED_CELL", col("TOP1MOST_USED_CELL").cast(StringType())) \ | |
.withColumn("TOP1MOST_USED_CELL_BY_CL_DUR", col("TOP1MOST_USED_CELL_BY_CL_DUR").cast(StringType())) \ | |
.withColumn("TOP1MOST_USED_CELL_BY_DATA_VOL", col("TOP1MOST_USED_CELL_BY_DATA_VOL").cast(StringType())) \ | |
.withColumn("DATA_USG_PAYG_VOL", col("DATA_USG_PAYG_VOL").cast(StringType())) \ | |
.withColumn("PKG_DATA_USG_VOL", col("PKG_DATA_USG_VOL").cast(StringType())) \ | |
.withColumn("VOI_PAYG_DUR", col("VOI_PAYG_DUR").cast(StringType())) \ | |
.withColumn("VOI_PKG_DUR", col("VOI_PKG_DUR").cast(StringType())) \ | |
.withColumn("SMS_PKG_CNT", col("SMS_PKG_CNT").cast(StringType())) \ | |
.withColumn("SMS_PAYG_CNT", col("SMS_PAYG_CNT").cast(StringType())) | |
### this is the error regarding precision | |
[Stage 0:> (0 + 1) / 1]23/01/18 13:22:51 ERROR scheduler.TaskSetManager: Task 0 in stage 0.0 failed 4 times; aborting job | |
23/01/18 13:22:51 ERROR datasources.FileFormatWriter: Aborting job e55cebc6-f1e0-438b-a899-ce2c40ba5d3c. | |
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, dhub-dnod49.datahub.m cci.local, executor 12): org.apache.spark.SparkException: Task failed while writing rows. | |
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:257) | |
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170) | |
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169) | |
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) | |
at org.apache.spark.scheduler.Task.run(Task.scala:121) | |
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407) | |
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408) | |
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413) | |
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) | |
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) | |
at java.lang.Thread.run(Thread.java:748) | |
Caused by: java.lang.IllegalArgumentException: requirement failed: Decimal precision 57 exceeds max precision 38 | |
at scala.Predef$.require(Predef.scala:224) | |
at org.apache.spark.sql.types.Decimal.set(Decimal.scala:114) | |
at org.apache.spark.sql.types.Decimal$.apply(Decimal.scala:453) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$3$$anonfun$12.apply(JdbcUtils.sc ala:407) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$3$$anonfun$12.apply(JdbcUtils.sc ala:407) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$nullSafeConvert(JdbcUtils.scala:509) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$3.apply(JdbcUtils.scala:407) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$3.apply(JdbcUtils.scala:405) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anon$1.getNext(JdbcUtils.scala:356) | |
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anon$1.getNext(JdbcUtils.scala:338) | |
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) | |
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) | |
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:30) | |
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) | |
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) | |
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:624) | |
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.sc ala:244) | |
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.sc ala:242) | |
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1442) | |
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:248) | |
... 10 more |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
MONTH_KEY | SBRP_ID | ACCS_MTHD_ID | ENCRYPTED_ACCS_MTHD_ID | SBRP_STAT_ID | SBRP_TYP_ID | BRTH_DT | ACTVN_DT | GNDR_ID | USIM_FLAG | RGTRN_PROVNC_ID | RGTRN_CITY_ID | LST_HNDST_ID | LST_HNDST_MODL_ID | EXMPTION_FEE | DATA_REV | DATA_PAGY_REV | DATA_PKG_REV | SMS_REV | VOICE_REV | VAS_REV | PKG_REV | ROAM_REV | INTL_REV | ABONMAN | CRM_SVC_REV | BAL_TRNSFR_AMT | CIP_REV | CIP_AVG_REV_12MONTH | AVG_TOT_12 | TOT_REV | ACCOM_DT | CNTN_MNTH_REV_CNT | CIP_REV_FLG | CIP_TOT_FLG | LOAD_DT | CIP_LVL_REV_ID | CIP_LVL_TOT_ID | TOP1MOST_USED_CELL | TOP1MOST_USED_CELL_BY_CL_DUR | TOP1MOST_USED_CELL_BY_DATA_VOL | DATA_USG_PAYG_VOL | PKG_DATA_USG_VOL | VOI_PAYG_DUR | VOI_PKG_DUR | SMS_PKG_CNT | SMS_PAYG_CNT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
140103 | 1510021051081920 | 989149710985 | 541909179958998 | 2 | 0 | 13650101 | 13860229 | 1 | 1 | 1 | 2111132 | 35284205932150 | 35284205 | 0 | 0 | 0 | 0 | 46758 | 241690.773 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 289448.773 | 169081.603 | 169681.603 | 289448.773 | 13860229 | 0 | 0 | 17-JAN-23 | 98281395476918535076221742106713565469100000000 | 98281395476918535076221742106713565469100000000 | -1 | 0 | 0 | 16131 | 0 | 0 | 338 | ||||
140103 | 1010021053494439 | 989146573139 | 941136751693998 | 2 | 0 | 13651106 | 13931022 | 1 | 1 | 1 | 2111100 | 35746963002079 | 35746963 | 0 | 16.2 | 16.2 | 0 | 0 | 70495.015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 70511.215 | 60147.041 | 60147.041 | 70511.215 | 13931022 | 0 | 0 | 17-JAN-23 | 1184586971584167125259814452265400345360000000000 | 82980434746157440002900480795601788726900000000 | 1184586971584167125259814452265400345360000000000 | 18371 | 157208869 | 4705 | 0 | 0 | 0 | ||||
140103 | 1710021103187531 | 989140172908 | 841920719080998 | 2 | 0 | 13570101 | 13931126 | 1 | 0 | 4 | 2141100 | 35325011659932 | 35325011 | 0 | 282000 | 0 | 282000 | 16886 | 205087.304 | 0 | 282000 | 0 | 0 | 0 | 0 | 0 | 504973.304 | 294914.21 | 294914.21 | 504973.304 | 13931126 | 0 | 0 | 17-JAN-23 | 66124586552983392236551162434830086474200000000 | 268845805509177459081022021734135459649000000000 | 66124586552983392236551162434830086474200000000 | 0 | 3896582174 | 13688 | 0 | 0 | 123 | ||||
140103 | 1411000081908560 | 989169111148 | 861119111984998 | 2 | 0 | 13420701 | 13980326 | 1 | 1 | 19 | 1191100 | 35407610432289 | 35407610 | 0 | 846000 | 0 | 846000 | 0 | 3655.852 | 0 | 846000 | 0 | 0 | 0 | 0 | 0 | 849655.852 | 592761.034 | 592761.034 | 849655.852 | 13980326 | 0 | 0 | 17-JAN-23 | 1289215394901486316991867870795846208320000000000 | 289701218067417657152459379769039162486600000000 | 1289215394901486316991867870795846208320000000000 | 0 | 19275141349 | 244 | 0 | 0 | 0 | ||||
140103 | 1210021064777841 | 989145134953 | 341945319535998 | 2 | 0 | 13760323 | 13960515 | 1 | 1 | 2 | 2121100 | 35472311866081 | 35472311 | 0 | 23918.1 | 23918.1 | 0 | 0 | 1123.725 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25041.825 | 54771.871 | 54771.871 | 25041.825 | 13960515 | 0 | 0 | 17-JAN-23 | 1341543272272607541856909468986097740240000000000 | 1006234079762903379575936297918584633060000000000 | 1006234079762903379575936297918584633060000000000 | 40803246 | 0 | 75 | 0 | 0 | 0 | ||||
140103 | 1211000080554969 | 989923778349 | 929383773394998 | 2 | 0 | 13590628 | 13980231 | 1 | 1 | 5 | 2151100 | 35645909609959 | 35645909 | 0 | 0 | 0 | 0 | 1224 | 328951.765 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 330175.765 | 145822.778 | 145822.778 | 330175.765 | 13980231 | 0 | 0 | 17-JAN-23 | 88698956120946734024330957932387500110000000000 | 88698956120946734024330957932387500110000000000 | -1 | 0 | 0 | 21955 | 0 | 0 | 9 | ||||
140103 | 311000183987212 | 989148864193 | 341148681839998 | 2 | 0 | 13521218 | 13881217 | 0 | 1 | 1 | 2111100 | 35472198298969 | 35472198 | 0 | 25083.6 | 25083.6 | 0 | 0 | 44934.017 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 70017.617 | 66433.585 | 66433.585 | 70017.617 | 14010219 | 0 | 0 | 17-JAN-23 | 910555503680251414399232583200480211604200000000 | 910555503680251414399232583200480211604200000000 | 614316815542487142013779069585079541756900000000 | 56018586 | 0 | 2999 | 0 | 0 | 0 | ||||
140103 | 711000185226755 | 989960745402 | 269450474020998 | 2 | 0 | 13440317 | 14010303 | 0 | 1 | 1 | -1 | 35083956379959 | 35083956 | 0 | 0 | 0 | 0 | 0 | 4584.798 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4584.798 | 4584.798 | 4584.798 | 4584.798 | 0 | 0 | 17-JAN-23 | 102658252060230497029641183568585653786700000000 | 422184699477361644747936918117245313034700000000 | 1408705410116084950276515797544056657680000000000 | 0 | 1178013 | 306 | 66 | 0 | 0 | |||||
140103 | 1011000128677158 | 989100883425 | 501430884052998 | 2 | 0 | 13810128 | 13960228 | 1 | 1 | 27 | 1271100 | 86635105128291 | 86635105 | 0 | 1128000 | 0 | 1128000 | 1018 | 24527.171 | 0 | 1128000 | 0 | 0 | 0 | 0 | 0 | 1153545.171 | 489338.688 | 493172.022 | 1153545.171 | 13990801 | 0 | 0 | 17-JAN-23 | 1293531122515722365141018130371217097830000000000 | 113873078251219756253450860976138965948700000000 | 1293531122515722365141018130371217097830000000000 | 0 | 25974481363 | 1637 | 0 | 0 | 4 | ||||
140103 | 111000175386377 | 989129329195 | 521199231959998 | 2 | 1 | 13760911 | 13921226 | 0 | 1 | 4380 | 2101100 | 35914477856063 | 35914477 | 0 | 1410000 | 0 | 1410000 | 41883 | 382428.764 | 0 | 1410000 | 0 | 40000 | 6300 | 0 | 0 | 1794311.764 | 1471409.357 | 1535583.357 | 1840611.764 | 14001102 | 0 | 0 | 17-JAN-23 | 1117207247566366982926816033136702775845000000 | 1244655532467324184700450990109586206580000000000 | 752958638024218553524714731276034530879900000000 | 0 | 35527847101 | 38308 | 0 | 0 | 8 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment