Last active
December 16, 2015 01:19
-
-
Save melpomene/5354104 to your computer and use it in GitHub Desktop.
Parse the list of question cards and turn them in to SVM readable format. http://svmlight.joachims.org/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| # encoding: utf-8 | |
| import codecs | |
| from collections import Counter | |
| class Card: | |
| def __init__(self, data): | |
| self.idnr= data[0].strip("\n") | |
| self.category = data[1].strip("\n") | |
| self.star = data[2].strip("\n") | |
| self.name = data[3].strip("\n") | |
| self.questions = list() | |
| self.addQuestion(data[4].strip("\n"), data[5].strip("\n"), data[6].strip("\n")) | |
| def addQuestion(self,value, text, answer): | |
| value = value.strip() | |
| if value== "250": nr = 1 | |
| elif value == "500": nr = 2 | |
| elif value == "1000": nr = 3 | |
| elif value == "2000": nr = 4 | |
| elif value == "5000": nr = 5 | |
| elif value == "10000": nr = 6 | |
| else: raise Exception("Parse error") | |
| self.questions.append([nr, value.strip("\n"), text.strip("\n"), answer.strip("\n")]) | |
| def __str__(self): | |
| s = u"kvitt:card{0} rdf:type kvitt:Card;\n" | |
| s += u"\tkvitt:header [\n" | |
| s += u"\t\tkvitt:id\t{0};\n" | |
| s += u'\t\tkvitt:category\t"{1}";\n' | |
| s += u'\t\tkvitt:star\t"{2}";\n' | |
| s += u'\t\tkvitt:name\t"{3}";\n' | |
| s += u'\t\tkvitt:questions \n' | |
| for q in self.questions: | |
| if q[0] == 6: | |
| last = u"]." | |
| else: | |
| last = u"," | |
| s += u'\t\t\t\t[kvitt:line\t{0}; kvitt:value\t{1}; kvitt:text\t"{2}"; kvitt:answer\t"{3}"]{4}\n'.format(q[0],q[1],q[2],q[3],last) | |
| return s.format(self.idnr, self.category, self.star, self.name) | |
| def toSVM(): | |
| src = codecs.open('fragor.txt', 'r', "utf-8-sig") | |
| output = open('bockerfilm_training.dat', 'w') | |
| cards = dict() | |
| for line in src: | |
| data = line.split('\t') | |
| if len(data) < 7: print data | |
| if data[0] in cards: | |
| cards[data[0]].addQuestion(data[4],data[5],data[6]) | |
| else: | |
| cards[data[0]] = Card(data) | |
| document_frequency = Counter() | |
| for card in cards.values(): | |
| for q in card.questions: | |
| text = q[2] # extract only the question | |
| for a in map(normalize, text.split()): document_frequency[a] += 1 # remove ,. and linebreaks etc. | |
| # TODO: Remove stopwords here | |
| all_words = list(document_frequency.keys()) | |
| for card in cards.values(): | |
| for q in card.questions: | |
| if card.category == u"Böcker och film": row ="1 " | |
| else: row = "-1 " | |
| words = map(normalize, q[2].split()) # remove here as well. | |
| for i in range(len(all_words)): | |
| if all_words[i] in words: row += str(i+1) + ":" + str(words.count(all_words[i]) / float(document_frequency[all_words[i]]))+ " " | |
| #else: row += str(i+1)+":0 " | |
| output.write(row+"\n") | |
| def normalize(word): | |
| word = word.strip() | |
| word = word.lower() | |
| word = word.strip(",!.;?") | |
| return word | |
| if __name__ == "__main__": | |
| toSVM() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment