Created
April 18, 2013 15:50
-
-
Save melpomene/5413822 to your computer and use it in GitHub Desktop.
Takes tabseperated card files and turns them into light svm files for course in intelligent systems.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| # encoding: utf-8 | |
| import codecs | |
| from collections import Counter | |
| class Card: | |
| def __init__(self, data): | |
| self.idnr= data[0].strip("\n") | |
| self.category = data[1].strip("\n") | |
| self.star = data[2].strip("\n") | |
| self.name = data[3].strip("\n") | |
| self.questions = list() | |
| self.addQuestion(data[4].strip("\n"), data[5].strip("\n"), data[6].strip("\n")) | |
| def addQuestion(self,value, text, answer): | |
| value = value.strip() | |
| if value== "250": nr = 1 | |
| elif value == "500": nr = 2 | |
| elif value == "1000": nr = 3 | |
| elif value == "2000": nr = 4 | |
| elif value == "5000": nr = 5 | |
| elif value == "10000": nr = 6 | |
| else: raise Exception("Parse error") | |
| self.questions.append([nr, value.strip("\n"), text.strip("\n"), answer.strip("\n")]) | |
| def __str__(self): | |
| s = u"kvitt:card{0} rdf:type kvitt:Card;\n" | |
| s += u"\tkvitt:header [\n" | |
| s += u"\t\tkvitt:id\t{0};\n" | |
| s += u'\t\tkvitt:category\t"{1}";\n' | |
| s += u'\t\tkvitt:star\t"{2}";\n' | |
| s += u'\t\tkvitt:name\t"{3}";\n' | |
| s += u'\t\tkvitt:questions \n' | |
| for q in self.questions: | |
| if q[0] == 6: | |
| last = u"]." | |
| else: | |
| last = u"," | |
| s += u'\t\t\t\t[kvitt:line\t{0}; kvitt:value\t{1}; kvitt:text\t"{2}"; kvitt:answer\t"{3}"]{4}\n'.format(q[0],q[1],q[2],q[3],last) | |
| return s.format(self.idnr, self.category, self.star, self.name) | |
| def toSVM(): | |
| src = codecs.open('fragor.txt', 'r', "utf-8-sig") | |
| output = open('bockerfilm_training_ngram.dat', 'w') | |
| cards = dict() | |
| for line in src: | |
| data = line.split('\t') | |
| if len(data) < 7: print data | |
| if data[0] in cards: | |
| cards[data[0]].addQuestion(data[4],data[5],data[6]) | |
| else: | |
| cards[data[0]] = Card(data) | |
| document_frequency = Counter() | |
| ngrams_freq = Counter() | |
| for card in cards.values(): | |
| for q in card.questions: | |
| text = q[2] # extract only the question | |
| append_ngrams(ngrams_freq, map(normalize, text.split())) | |
| for a in map(normalize, text.split()): document_frequency[a] += 1 | |
| all_words = list(document_frequency.keys()) | |
| all_ngrams = list(ngrams_freq.keys()) | |
| for card in cards.values(): | |
| for q in card.questions: | |
| if card.category == u"Böcker och film": row ="1 " | |
| else: row = "-1 " | |
| words = map(normalize, q[2].split()) | |
| for i in range(len(all_words)): | |
| if all_words[i] in words: row += str(i+1) + ":" + str(words.count(all_words[i]) / float(document_frequency[all_words[i]]))+ " " | |
| #else: row += str(i+1)+":0 " | |
| i_from = len(all_words) | |
| for i in range(len(all_ngrams)): | |
| ng = ngrams(words) | |
| if all_ngrams[i] in ng: row += str(i_from+i+1)+":"+str(ng[all_ngrams[i]] / float(ngrams_freq[all_ngrams[i]]))+" " | |
| output.write(row+"\n") | |
| def ngrams(wordlist, n=2): | |
| data = Counter() | |
| for i in range(len(wordlist)): | |
| ng = wordlist[i] | |
| for j in range(1, n): | |
| ng += ","+wordlist[j] | |
| data[ng] += 1 | |
| return data | |
| def append_ngrams(counter, wordlist, n=2): | |
| for i in range(len(wordlist)): | |
| ng = wordlist[i] | |
| for j in range(1, n): | |
| ng += ","+wordlist[j] | |
| counter[ng] += 1 | |
| return counter | |
| def in_ngram(ngrams, words, n=2): | |
| ngram = words[0] | |
| for i in range(1, n): | |
| ngram += ","+words[i] | |
| return ngram in ngrams | |
| def normalize(word): | |
| word = word.strip() | |
| word = word.lower() | |
| word = word.strip(",!.;?") | |
| return word | |
| if __name__ == "__main__": | |
| toSVM() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment