Skip to content

Instantly share code, notes, and snippets.

@mementum
Created August 26, 2019 21:34
Show Gist options
  • Save mementum/364173371634b226120dc39708cd9610 to your computer and use it in GitHub Desktop.
Save mementum/364173371634b226120dc39708cd9610 to your computer and use it in GitHub Desktop.
Beating The Random Entry
#!/usr/bin/env python
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
# Copyright (C) 2019 Daniel Rodriguez - MIT License
# - https://opensource.org/licenses/MIT
# - https://en.wikipedia.org/wiki/MIT_License
###############################################################################
import argparse
import random
import pandas as pd
import backtrader as bt
def read_dataframe(filename, years):
colnames = ['ticker', 'period', 'date', 'time',
'open', 'high', 'low', 'close', 'volume', 'openinterest']
colsused = ['date',
'open', 'high', 'low', 'close', 'volume', 'openinterest']
df = pd.read_csv(filename,
skiprows=1, # using own column names, skip header
names=colnames,
usecols=colsused,
parse_dates=['date'],
index_col='date')
if years: # year or year range specified
ysplit = years.split('-')
# left side limit
mask = df.index >= ((ysplit[0] or '0001') + '-01-01') # support -YYYY
# right side liit
if len(ysplit) > 1: # multiple or open ended (YYYY-ZZZZ or YYYY-)
if ysplit[1]: # open ended if not years[1] (YYYY- format)
mask &= df.index <= (ysplit[1] + '-12-31')
else: # single year specified YYYY
mask &= df.index <= (ysplit[0] + '-12-31')
df = df.loc[mask] # select the given date range
return df
# DEFAULTS - CAN BE CHANGED VIA COMMAND LINE OPTIONS
COMMINFO_DEFAULT = dict(
stocklike=False, # Futures-like
commtype=bt.CommissionInfo.COMM_FIXED, # fixed price per asset
commission=2.0, # Standard IB Price for futures
mult=1000.0, # multiplier
margin=2000.0, # $50 x 50 => $2500
)
class PercentRiskSizer(bt.Sizer):
'''Sizer modeling the Percentage Risk sizing model of Van K. Tharp'''
params = dict(percrisk=0.01) # 1% percentage risk
def _getsizing(self, comminfo, cash, data, isbuy):
# Risk per 1 contract
risk = comminfo.p.mult * self.strategy.stoptrailer.stop_dist[0]
# % of account value to risk
torisk = self.broker.get_value() * self.p.percrisk
return torisk // risk # size to risk
class CoinFlip(bt.Indicator):
lines = ('coinflip',)
HEAD, TAIL = 1, 0
def next(self):
self.l.coinflip[0] = 0.5 # midway
pass
def flip(self):
# self.l.coinflip[0] = cf = random.randrage(-1, 2, 2) # -1 or 1
self.l.coinflip[0] = cf = random.randint(0, 1)
return cf
def head(self, val=None):
if val is None:
return self.lines[0] == self.HEAD
return val == self.HEAD
class StopTrailer(bt.Indicator):
_nextforce = True # force system into step by step calcs
lines = ('stop_long', 'stop_short',)
plotinfo = dict(subplot=False, plotlinelabels=True)
params = dict(
atrperiod=14,
emaperiod=10,
stopfactor=3.0,
)
def __init__(self):
self.strat = self._owner # alias for clarity
# Volatility which determines stop distance
atr = bt.ind.ATR(self.data, period=self.p.atrperiod)
emaatr = bt.ind.EMA(atr, period=self.p.emaperiod)
self.stop_dist = emaatr * self.p.stopfactor
# Running stop price calc, applied in next according to market pos
self.s_l = self.data - self.stop_dist
self.s_s = self.data + self.stop_dist
def next(self):
# When entering the market, the stop has to be set
if self.strat.entering > 0: # entering long
self.l.stop_long[0] = self.s_l[0]
elif self.strat.entering < 0: # entering short
self.l.stop_short[0] = self.s_s[0]
else: # In the market, adjust stop only in the direction of the trade
if self.strat.position.size > 0:
self.l.stop_long[0] = max(self.s_l[0], self.l.stop_long[-1])
elif self.strat.position.size < 0:
self.l.stop_short[0] = min(self.s_s[0], self.l.stop_short[-1])
class St1(bt.Strategy):
SHORT, NONE, LONG = -1, 0, 1
params = dict(
atrperiod=14, # measure volatility over x days
emaperiod=10, # smooth out period for atr volatility
stopfactor=3.0, # actual stop distance for smoothed atr
verbose=False, # print out debug info
samebar=True, # close and re-open on samebar
)
def __init__(self):
self.coinflip = CoinFlip()
# Trailing Stop Indicator
self.stoptrailer = st = StopTrailer(atrperiod=self.p.atrperiod,
emaperiod=self.p.emaperiod,
stopfactor=self.p.stopfactor)
# Exit Criteria (Stop Trail) for long / short positions
self.exit_long = bt.ind.CrossDown(self.data,
st.stop_long, plotname='Exit Long')
self.exit_short = bt.ind.CrossUp(self.data,
st.stop_short, plotname='Exit Short')
def start(self):
self.entering = 0
self.start_val = self.broker.get_value()
def stop(self):
self.stop_val = self.broker.get_value()
self.pnl_val = self.stop_val - self.start_val
self.log('Start Value: {:.2f}', self.start_val)
self.log('Final Value: {:.2f}', self.stop_val)
self.log('PNL Value: {:.2f}', self.pnl_val)
def notify_trade(self, trade):
if trade.size > 0:
self.log('Long Entry at: {:.2f}', trade.price)
elif trade.size < 0:
self.log('Short Entry at: {:.2f}', trade.price)
else: # not trade.size - trade is over
self.log('Trade PNL: {:.2f}', trade.pnlcomm)
def next(self):
self.logdata()
# logic
closing = None
if self.position.size > 0: # In the market - Long
self.log('Long Stop Price: {:.2f}', self.stoptrailer.stop_long[0])
if self.exit_long:
closing = self.close()
elif self.position.size < 0: # In the market - Short
self.log('Short Stop Price {:.2f}', self.stoptrailer.stop_short[0])
if self.exit_short:
closing = self.close()
self.entering = self.NONE
if not self.position or (closing and self.p.samebar):
# Not in the market or closing pos and reenter in samebar
if self.coinflip.flip():
self.entering = self.LONG if self.buy() else self.NONE
else:
self.entering = self.SHORT if self.sell() else self.NONE
def logdata(self):
if self.p.verbose: # logging
txt = []
txt += ['{:.2f}'.format(self.position.size)]
txt += ['{:.2f}'.format(self.data.open[0])]
txt += ['{:.2f}'.format(self.data.high[0])]
txt += ['{:.2f}'.format(self.data.low[0])]
txt += ['{:.2f}'.format(self.data.close[0])]
self.log(','.join(txt))
def log(self, txt, *args):
if self.p.verbose:
out = [self.datetime.date().isoformat(), txt.format(*args)]
print(','.join(out))
def runstrat(args):
cerebro = bt.Cerebro()
# Data feed kwargs
dataargs = dict(dataname=read_dataframe(args.data, args.years))
dataargs.update(eval('dict(' + args.dargs + ')'))
cerebro.adddata(bt.feeds.PandasData(**dataargs))
# Strategy
cerebro.addstrategy(St1, **eval('dict(' + args.strat + ')'))
# Broker
brokerargs = dict(cash=args.cash)
brokerargs.update(eval('dict(' + args.broker + ')'))
cerebro.broker = bt.brokers.BackBroker(**brokerargs)
# Commission
commargs = COMMINFO_DEFAULT
commargs.update(eval('dict(' + args.commission + ')'))
cerebro.broker.setcommission(**commargs)
# Sizer
szcls = PercentRiskSizer if args.percrisk else bt.sizers.FixedSize
cerebro.addsizer(szcls, **(eval('dict(' + args.sizer + ')')))
# Analyze the trades
cerebro.addanalyzer(bt.analyzers.TradeAnalyzer, _name='trades')
# Execute
strats = cerebro.run(**eval('dict(' + args.cerebro + ')'))
if args.plot: # Plot if requested to
cerebro.plot(**eval('dict(' + args.plot + ')'))
return strats[0]
def run(args=None):
args = parse_args(args)
results = []
sum_won_trades = 0
sum_total_trades = 0
for i in range(0, args.iterations):
strat = runstrat(args)
pnl = strat.pnl_val
results.append(pnl)
trades = strat.analyzers.trades.get_analysis()
print('**** Iteration: {:4d}'.format(i + 1))
print('-- PNL: {:.2f}'.format(pnl))
total_trades = trades.total.closed
total_won = trades.won.total
perc_won = total_won / total_trades
print('-- Trades {} - Won {} - %_Won: {:.2f}'.format(
total_trades, total_won, perc_won))
sum_won_trades += total_won
sum_total_trades += total_trades
total = len(results)
won = sum(1 for x in results if x > 0)
print('**** Summary of Runs')
print('-- Total : {:8d}'.format(total))
print('-- Won : {:8d}'.format(won))
print('-- % Won : {:.2f}'.format(won / total))
perc_won = sum_won_trades / sum_total_trades
print('**** Summary of Trades')
print('-- Total : {:8d}'.format(sum_total_trades))
print('-- Total Won : {:8d}'.format(sum_won_trades))
print('-- % Total Won : {:.2f}'.format(perc_won))
if args.scatter:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(min(results), max(results), num=len(results))
y = np.asarray(results)
plt.scatter(x, y)
plt.show()
def parse_args(pargs=None):
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Van K. Tharp/Basso Random Entry Scenario',
)
parser.add_argument('--iterations', default=1, type=int,
help='Number of iterations to run the system')
pgroup = parser.add_argument_group(title='Data Options')
pgroup.add_argument('--data', default='cl-day-001.txt',
help='Data to read in')
pgroup.add_argument('--years', default='',
help='Formats: YYYY-ZZZZ / YYYY / YYYY- / -ZZZZ')
parser.add_argument('--dargs', required=False, default='',
metavar='kwargs', help='kwargs in key=value format')
pgroup = parser.add_argument_group(title='Cerebro Arguments')
pgroup.add_argument('--cerebro', default='', metavar='kwargs',
help='Cerebro kwargs in key=value format')
pgroup = parser.add_argument_group(title='Commission Arguments')
pgroup.add_argument('--commission', default=str(COMMINFO_DEFAULT),
metavar='kwargs',
help='CommInfo kwargs in key=value format')
pgroup = parser.add_argument_group(title='Broker Arguments')
pgroup.add_argument('--broker', default='', metavar='kwargs',
help='Broker kwargs in key=value format')
pgroup.add_argument('--cash', default=1000000.0, type=float,
help='Default cash')
pgroup = parser.add_argument_group(title='Strategy Arguments')
pgroup.add_argument('--strat', default='', metavar='kwargs',
help='Strategy kwargs in key=value format')
pgroup = parser.add_argument_group(title='Sizer Options')
pgroup.add_argument('--sizer', default='', metavar='kwargs',
help='Sizer kwargs in key=value format')
pgroup = pgroup.add_mutually_exclusive_group()
pgroup.add_argument('--percrisk', action='store_true',
help='Use Percrisk Sizer')
pgroup.add_argument('--fixedsize', action='store_true',
help='Use Fixed Statke Sizer')
pgroup = parser.add_argument_group(title='Plotting Options')
pgroup.add_argument('--plot', default='', nargs='?', const='{}',
metavar='kwargs', help='kwargs in key=value format')
pgroup.add_argument('--scatter', action='store_true',
help='Plot a scatter diagram of PNL results')
return parser.parse_args(pargs)
if __name__ == '__main__':
run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment