-
-
Save memezilla/783cef5912d92e50dfd65f36448f6096 to your computer and use it in GitHub Desktop.
Draw a basic scatter plot graph with react and d3. Draw the trend-line between your points. Example graph in comments below.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import React from "react" | |
import ScatterPlot from "./ScatterPlot-with-trendline" | |
data={[[0, 3],[5, 13],[10, 22],[15, 36],[20, 48],[25, 59],[30, 77],[35, 85],[40, 95],[45, 105],[50, 120],[55, 150],[60, 147],[65, 168],[70, 176],[75, 188],[80, 199],[85, 213],[90, 222],[95, 236],[100, 249]]} | |
export default class LinearGraph extends React.Component { | |
render() { | |
return <ScatterPlot data={data} /> | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* ScatterPlot-with-trendline.jsx | |
Requires: react and d3 (ie `npm install -S react d3`) | |
See the LinearGraph for an example of calling ScatterPlot | |
*/ | |
import React from "react" | |
import { scaleLinear, max, axisLeft, axisBottom, select } from "d3" | |
function sortNumber(a, b) { | |
return a - b | |
} | |
export default class ScatterPlot extends React.Component { | |
constructor(props) { | |
super(props) | |
} | |
render() { | |
const margin = { top: 20, right: 15, bottom: 60, left: 60 } | |
const width = 800 - margin.left - margin.right | |
const height = 600 - margin.top - margin.bottom | |
const data = this.props.data | |
const x = scaleLinear() | |
.domain([ | |
0, | |
max(data, function(d) { | |
return d[0] | |
}) | |
]) | |
.range([0, width]) | |
const y = scaleLinear() | |
.domain([ | |
0, | |
max(data, function(d) { | |
return d[1] | |
}) | |
]) | |
.range([height, 0]) | |
return ( | |
<div> | |
<h3> Scatter Plot with Trend Line </h3> | |
<svg | |
width={width + margin.right + margin.left} | |
height={height + margin.top + margin.bottom} | |
className="chart" | |
> | |
<g | |
transform={"translate(" + margin.left + "," + margin.top + ")"} | |
width={width} | |
height={height} | |
className="main" | |
> | |
<RenderCircles data={data} scale={{ x, y }} /> | |
<TrendLine data={data} scale={{ x, y }} /> | |
<Axis | |
axis="x" | |
transform={"translate(0," + height + ")"} | |
scale={axisBottom().scale(x)} | |
/> | |
<Axis | |
axis="y" | |
transform="translate(0,0)" | |
scale={axisLeft().scale(y)} | |
/> | |
</g> | |
</svg> | |
</div> | |
) | |
} | |
} | |
class RenderCircles extends React.Component { | |
render() { | |
let renderCircles = this.props.data.map((coords, i) => ( | |
<circle | |
cx={this.props.scale.x(coords[0])} | |
cy={this.props.scale.y(coords[1])} | |
r="8" | |
style={{ fill: "rgba(25, 158, 199, .9)" }} | |
key={i} | |
/> | |
)) | |
return <g>{renderCircles}</g> | |
} | |
} | |
class TrendLine extends React.Component { | |
render() { | |
let x_coords = this.props.data.map(n => { | |
return n[0] | |
}) | |
let y_coords = this.props.data.map(n => { | |
return n[1] | |
}) | |
const trendline = linearRegression(y_coords, x_coords) | |
// Lowest and highest x coordinates to draw a plot line | |
const lowest_x = x_coords.sort(sortNumber)[0] | |
const hightest_x = x_coords.sort(sortNumber)[x_coords.length - 1] | |
const trendline_points = [ | |
[lowest_x, trendline(lowest_x)], | |
[hightest_x, trendline(hightest_x)] | |
] | |
return ( | |
<line | |
x1={this.props.scale.x(trendline_points[0][0])} | |
y1={this.props.scale.y(trendline_points[0][1])} | |
x2={this.props.scale.x(trendline_points[1][0])} | |
y2={this.props.scale.y(trendline_points[1][1])} | |
style={{ stroke: "black", strokeWidth: "2" }} | |
/> | |
) | |
} | |
} | |
class Axis extends React.Component { | |
componentDidMount() { | |
const node = this.refs[this.props.axis] | |
select(node).call(this.props.scale) | |
} | |
render() { | |
return ( | |
<g | |
className="main axis date" | |
transform={this.props.transform} | |
ref={this.props.axis} | |
/> | |
) | |
} | |
} | |
function linearRegression(y, x) { | |
var lr = {} | |
var n = y.length | |
var sum_x = 0 | |
var sum_y = 0 | |
var sum_xy = 0 | |
var sum_xx = 0 | |
var sum_yy = 0 | |
for (var i = 0; i < y.length; i++) { | |
sum_x += x[i] | |
sum_y += y[i] | |
sum_xy += x[i] * y[i] | |
sum_xx += x[i] * x[i] | |
sum_yy += y[i] * y[i] | |
} | |
lr["slope"] = (n * sum_xy - sum_x * sum_y) / (n * sum_xx - sum_x * sum_x) | |
lr["intercept"] = (sum_y - lr.slope * sum_x) / n | |
lr["r2"] = Math.pow( | |
(n * sum_xy - sum_x * sum_y) / | |
Math.sqrt((n * sum_xx - sum_x * sum_x) * (n * sum_yy - sum_y * sum_y)), | |
2 | |
) | |
return x => { | |
return lr.slope * x + lr.intercept | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment