Created
February 16, 2021 12:35
-
-
Save mengwangk/1cfc8db3dfb30f94ec16301002ae6e4f to your computer and use it in GitHub Desktop.
YOLOV5 - Backend yolov5.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import os | |
import logging | |
from dotenv import load_dotenv, find_dotenv | |
from PIL import Image | |
load_dotenv(find_dotenv()) | |
yolo_model = os.getenv("YOLO_MODEL", "yolov5s") | |
logging.info(f"YOLO model - {yolo_model}") | |
model = torch.hub.load("ultralytics/yolov5", yolo_model, pretrained=True) | |
def yolov5(img): | |
"""Process a PIL image.""" | |
# Inference | |
results = model(img) | |
detected_classes = [] | |
names = results.names | |
if results.pred is not None: | |
pred = results.pred[0] | |
if pred is not None: | |
for c in pred[:, -1].unique(): | |
n = (pred[:, -1] == c).sum() | |
detected_classes.append(f"{n} {names[int(c)]}{'s' * (n > 1)}") | |
logging.info(f"Detected classes: {detected_classes}") | |
rendered_imgs = results.render() | |
converted_img = Image.fromarray(rendered_imgs[0]).convert("RGB") | |
return detected_classes, converted_img |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment