Created
June 3, 2019 10:12
-
-
Save merryhime/0bea3a2979768fe2911f43c3875aa7e3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy | |
import matplotlib.pyplot as plt | |
def IdealH(f): | |
T = 1. / 441000. # we use the tenfold sampling frequency | |
OmegaU = 1. / 15e-6 | |
OmegaL = 15. / 50. * OmegaU | |
# Calculate filter coefficients | |
V0 = OmegaL / OmegaU | |
H0 = V0 - 1. | |
B = V0 * numpy.tan(OmegaU * T / 2.) | |
A1 = (B - 1.) / (B + 1.) | |
B0 = (1. + (1. - A1) * H0 / 2.) | |
B1 = (A1 + (A1 - 1.) * H0 / 2.) | |
# helper variables | |
D = B1 / B0 | |
O = 2 * math.pi * T | |
# Ideal transfer function | |
return B0*numpy.sqrt((1 + 2*numpy.cos(f*O)*D + D*D)/(1 + 2*numpy.cos(f*O)*A1 + A1*A1)) | |
def plot(a0, a1, a2, b1, b2): | |
sampF = 44100. | |
o = 2 * math.pi * (1. / sampF) | |
f = numpy.arange(0, sampF / 2, sampF / 1000) | |
# | |
H = numpy.sqrt((a0*a0 + a1*a1 + a2*a2 + 2.*(a0*a1 + a1*a2)*numpy.cos(f*o) + 2.*(a0*a2)*numpy.cos(2.*f*o)) / (1. + b1*b1 + b2*b2 + 2.*(b1 + b1*b2)*numpy.cos(f*o) + 2.*b2*numpy.cos(2.*f*o))) | |
IH = IdealH(f) | |
# | |
H = -20. * numpy.log10(H) | |
IH = -20. * numpy.log10(IH) | |
# | |
plt.semilogx(f, H, 'r--') | |
plt.semilogx(f, IH, 'g--') | |
plt.show() | |
def foo(gain, cutoffFrequency, Q): | |
samplingFrequency = 44100. | |
# | |
v = math.pow(10., abs(gain) / 20.0) | |
k = math.tan(math.pi * cutoffFrequency / samplingFrequency) | |
n = 0.0 | |
# | |
if gain >= 0: | |
n = 1. / (1. + k/Q + k * k) | |
a0 = (v + math.sqrt(v)/Q * k + k * k) * n | |
a1 = 2 * (k * k - v) * n | |
a2 = (v - math.sqrt(v)/Q * k + k * k) * n | |
b1 = 2 * (k * k - 1) * n | |
b2 = (1 - k/Q + k * k) * n | |
else: | |
n = 1. / (v + math.sqrt(v)/Q * k + k * k) | |
a0 = (1 + k/Q + k * k) * n | |
a1 = 2 * (k * k - 1) * n | |
a2 = (1 - k/Q + k * k) * n | |
b1 = 2 * (k * k - v) * n | |
b2 = (v - math.sqrt(v)/Q * k + k * k) * n | |
# | |
plot(a0, a1, a2, b1, b2) | |
cutoff = (10000. + 3100.)/2. | |
gain = -9.477 | |
A = math.pow(10., gain / 2. / 20.) | |
slope = .5 | |
Q = 1 / math.sqrt((A + 1. / A) * (1. / slope - 1.) + 2.) | |
foo(gain, cutoff, Q) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment