Created
May 9, 2024 05:19
-
-
Save merrymercy/6b271ee8ef3bcd64b935f1a3b0feff50 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# mpirun -np 2 python p2p-nonblocking.py | |
import cupy as cp | |
import cupy.cuda.nccl as nccl | |
from mpi4py import MPI | |
import time | |
import os | |
import jax.numpy as jnp | |
nbytes = 1024*1024*32 | |
data_type = cp.float32 | |
buffsize = nbytes | |
os.environ["NCCL_BUFFSIZE"] = str(buffsize) | |
os.environ["NCCL_P2P_NVL_CHUNKSIZE"] = str(buffsize) | |
os.environ["NCCL_P2P_NET_CHUNKSIZE"] = str(buffsize) | |
os.environ["NCCL_MAX_NCHANNELS"] = "1" | |
os.environ["NCCL_DEBUG"] = "INFO" | |
def run_benchmark(mpi_comm, nccl_comm): | |
if data_type == cp.float32: | |
nccl_dtype = nccl.NCCL_FLOAT32 | |
nbytes_per_elem = 4 | |
nelem = nbytes // nbytes_per_elem | |
memory = cp.zeros(nelem, dtype=data_type) | |
stream = cp.cuda.Stream(non_blocking=True) | |
stream2 = cp.cuda.Stream(non_blocking=True) | |
# warmup to just make the connections | |
nccl.groupStart() | |
if mpi_comm.rank == 0: | |
nccl_comm.send( | |
memory.data.ptr, nelem, nccl_dtype, 1, stream.ptr | |
) | |
nccl_comm.recv( | |
memory.data.ptr, nelem, nccl_dtype, 1, stream.ptr | |
) | |
elif mpi_comm.rank == 1: | |
nccl_comm.send( | |
memory.data.ptr, nelem, nccl_dtype, 0, stream.ptr | |
) | |
nccl_comm.recv( | |
memory.data.ptr, nelem, nccl_dtype, 0, stream.ptr | |
) | |
nccl.groupEnd() | |
a_cp = cp.ones((1024, 1024)) | |
b_cp = cp.ones((1024, 1024)) | |
a_jnp = jnp.ones((1024, 1024)) | |
b_jnp = jnp.ones((1024, 1024)) | |
# warmup | |
_ = cp.ones(10) + cp.ones(10) | |
_ = jnp.ones(10) + jnp.ones(10) | |
cp.cuda.runtime.deviceSynchronize() | |
mpi_comm.barrier() | |
st = time.time() | |
if mpi_comm.rank == 0: | |
pass | |
# time.sleep(5) | |
# nccl_comm.send( | |
# memory.data.ptr, nelem, nccl_dtype, 1, stream.ptr | |
# ) | |
elif mpi_comm.rank == 1: | |
print("recv begin") | |
# nccl.groupStart() | |
nccl_comm.recv( | |
memory.data.ptr, nelem, nccl_dtype, 0, stream.ptr | |
) | |
# nccl.groupEnd() | |
print("recv end") | |
print("compute begin") | |
#with stream2: | |
# c = a_cp + b_cp | |
with stream2: | |
c = a_jnp + b_jnp | |
print("compute end", flush=True) | |
mpi_comm.barrier() | |
cp.cuda.runtime.deviceSynchronize() | |
en = time.time() | |
print(f"{mpi_comm.rank} took {en-st} seconds") | |
def create_nccl_comm(mpi_comm): | |
root = 0 | |
if mpi_comm.rank == root: | |
uid = nccl.get_unique_id() | |
else: | |
uid = None | |
uid = mpi_comm.bcast(uid, root=root) | |
cp.cuda.runtime.deviceSynchronize() | |
tic = time.time() | |
comm = nccl.NcclCommunicator(mpi_comm.size, uid, mpi_comm.rank) | |
cp.cuda.runtime.deviceSynchronize() | |
print(f"communicator cost: {time.time() - tic:.2f}s") | |
return comm | |
if __name__ == "__main__": | |
world_comm = MPI.COMM_WORLD | |
world_rank = world_comm.rank | |
world_size = world_comm.size | |
nccl_comm = None | |
assert world_size == 2 | |
try: | |
#cp.cuda.Device(world_rank).use() | |
os.environ["CUDA_VISIBLE_DEVICES"] = f"{world_rank}" | |
cp.cuda.Device(0).use() | |
nccl_comm = create_nccl_comm(world_comm) | |
run_benchmark(world_comm, nccl_comm) | |
nccl_comm = None | |
MPI.Finalize() | |
world_comm = None | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
if nccl_comm: | |
nccl_comm.abort() | |
world_comm.Abort() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment