Created
September 14, 2024 21:22
-
-
Save merrymercy/9aa9e6a1c5e39246605e1df1604bbc10 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Copyright 2023-2024 SGLang Team | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
"""Fused operators for activation layers.""" | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from vllm.distributed import ( | |
divide, | |
get_tensor_model_parallel_rank, | |
get_tensor_model_parallel_world_size, | |
) | |
from vllm.model_executor.custom_op import CustomOp | |
from vllm.model_executor.layers.quantization import QuantizationConfig | |
from vllm.model_executor.utils import set_weight_attrs | |
from vllm.utils import is_hip | |
logger = logging.getLogger(__name__) | |
try: | |
if is_hip(): | |
raise ImportError("FlashInfer is not supported on AMD GPUs.") | |
from flashinfer.activation import gelu_and_mul, gelu_tanh_and_mul, silu_and_mul | |
except ImportError as e: | |
logger.warning("FlashInfer is not available. Fallback to other kernel libraries. Message: {e}") | |
from vllm._custom_ops import gelu_and_mul, gelu_tanh_and_mul, silu_and_mul | |
class SiluAndMul(CustomOp): | |
def forward_native(self, x: torch.Tensor) -> torch.Tensor: | |
d = x.shape[-1] // 2 | |
return F.silu(x[..., :d]) * x[..., d:] | |
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor: | |
d = x.shape[-1] // 2 | |
output_shape = x.shape[:-1] + (d,) | |
out = torch.empty(output_shape, dtype=x.dtype, device=x.device) | |
silu_and_mul(x, out) | |
return out | |
class GeluAndMul(CustomOp): | |
def __init__(self, approximate="tanh"): | |
super().__init__() | |
self.approximate = approximate | |
def forward_native(self, x: torch.Tensor) -> torch.Tensor: | |
d = x.shape[-1] // 2 | |
return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:] | |
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor: | |
d = x.shape[-1] // 2 | |
output_shape = x.shape[:-1] + (d,) | |
out = torch.empty(output_shape, dtype=x.dtype, device=x.device) | |
if self.approximate == "tanh": | |
gelu_tanh_and_mul(x, out) | |
elif self.approximate == "none": | |
gelu_and_mul(x, out) | |
else: | |
raise RuntimeError("GeluAndMul only support tanh or none") | |
return out | |
class ScaledActivation(nn.Module): | |
"""An activation function with post-scale parameters. | |
This is used for some quantization methods like AWQ. | |
""" | |
def __init__( | |
self, | |
act_module: nn.Module, | |
intermediate_size: int, | |
input_is_parallel: bool = True, | |
params_dtype: Optional[torch.dtype] = None, | |
): | |
super().__init__() | |
self.act = act_module | |
self.input_is_parallel = input_is_parallel | |
if input_is_parallel: | |
tp_size = get_tensor_model_parallel_world_size() | |
intermediate_size_per_partition = divide(intermediate_size, tp_size) | |
else: | |
intermediate_size_per_partition = intermediate_size | |
if params_dtype is None: | |
params_dtype = torch.get_default_dtype() | |
self.scales = nn.Parameter( | |
torch.empty(intermediate_size_per_partition, dtype=params_dtype) | |
) | |
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader}) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.act(x) / self.scales | |
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): | |
param_data = param.data | |
if self.input_is_parallel: | |
tp_rank = get_tensor_model_parallel_rank() | |
shard_size = param_data.shape[0] | |
start_idx = tp_rank * shard_size | |
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size) | |
assert param_data.shape == loaded_weight.shape | |
param_data.copy_(loaded_weight) | |
_ACTIVATION_REGISTRY = { | |
"gelu": nn.GELU(), | |
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"), | |
} | |
def get_act_fn( | |
act_fn_name: str, | |
quant_config: Optional[QuantizationConfig] = None, | |
intermediate_size: Optional[int] = None, | |
input_is_parallel: bool = True, | |
params_dtype: Optional[torch.dtype] = None, | |
) -> nn.Module: | |
"""Get an activation function by name.""" | |
act_fn_name = act_fn_name.lower() | |
if act_fn_name not in _ACTIVATION_REGISTRY: | |
raise ValueError(f"Activation function {act_fn_name!r} is not supported.") | |
act_fn = _ACTIVATION_REGISTRY[act_fn_name] | |
if quant_config is not None and act_fn_name in quant_config.get_scaled_act_names(): | |
if intermediate_size is None: | |
raise ValueError( | |
"intermediate_size must be specified for scaled " | |
"activation functions." | |
) | |
return ScaledActivation( | |
act_fn, intermediate_size, input_is_parallel, params_dtype | |
) | |
return act_fn |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment