Last active
April 1, 2023 18:51
-
-
Save metric-space/f95eb8f2ead9c93f0c76ff52be490c40 to your computer and use it in GitHub Desktop.
Karpathy's charRNN using primitive jax
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import jax.numpy as jnp | |
from jax import jit, vmap, grad, value_and_grad | |
from jax import random | |
import jax | |
SEED = 42234 | |
key = random.PRNGKey(SEED) | |
# hyperparameters | |
hidden_size = 100 | |
seq_length = 25 | |
learning_rate = 1e-3 | |
def initialize_network_params(hidden_size, vocab_size, key): | |
key, *subkey = random.split(key, num=4) | |
# model parameters | |
# :: Matrix R[hidden_size] C[vocab_size] | |
Wxh = random.normal(subkey[0], (hidden_size, vocab_size)) * 0.01 # input to hidden | |
Whh = random.normal(subkey[1], (hidden_size, hidden_size)) * 0.01 # hidden to hidden | |
Why = random.normal(subkey[2], (vocab_size, hidden_size)) * 0.01 # hidden to output | |
bh = jnp.zeros((hidden_size, 1)) # hidden bias | |
by = jnp.zeros((vocab_size, 1)) # output bias | |
return Wxh, Whh, Why, bh, by | |
@jit | |
def loss(params,inputs, targets, hprev): | |
loss = 0 | |
Wxh, Whh, Why, bh, by = params | |
hprev = hprev.copy() | |
for t in range(len(inputs)): | |
x = jnp.zeros(by.shape) | |
x = x.at[inputs[t]].set(1) | |
y = targets[t] | |
hprev = jnp.tanh(Wxh @ x + Whh @ hprev + bh) | |
y_pred = Why @ hprev + by | |
log_prob = jax.nn.log_softmax(y_pred.flatten()) # this (log_softmax) affects stability | |
loss += -log_prob[y] | |
return loss, hprev | |
def sample(params, hprev, seed_ix, n, key): | |
Wxh, Whh, Why, bh, by = params | |
x = jnp.zeros((vocab_size,1)) | |
x = x.at[seed_ix].set(1) | |
ixes = [] | |
key_ = key | |
h = hprev.copy() | |
for i in range(n): | |
key_, subkey = random.split(key_) | |
h = jnp.tanh(Wxh @ x + Whh @ h + bh) | |
y_pred = Why @ h + by | |
p = jax.nn.softmax(y_pred.flatten()) | |
ix = jax.random.choice(subkey, jnp.arange(vocab_size), p=p, replace=False) | |
ix = int(ix) | |
ixes.append(ix) | |
x = jnp.zeros((vocab_size,1)) | |
x = x.at[ix].set(1) | |
return ixes, key_ | |
@jit | |
def update(params, inputs, targets, hprev): | |
(loss_, hprev),grads = value_and_grad(loss, has_aux=True)(params, inputs, targets, hprev) | |
return [jnp.clip(w - learning_rate * dw, -5, 5) for (w, dw) in zip(params, grads)], loss_, hprev | |
with open('input.txt', 'r') as f: | |
data = f.read() | |
chars = list(set(data)) | |
char_to_ix = { ch:i for i,ch in enumerate(chars)} | |
ix_to_char = { i:ch for i, ch in enumerate(chars)} | |
vocab_size = len(chars) | |
params = initialize_network_params(hidden_size, vocab_size, key) | |
p = -seq_length | |
n = 0 | |
hprev = jnp.zeros((hidden_size,1)) | |
Wxh, Whh, Why, bh, by = params | |
while True: | |
p = p + seq_length | |
if ((p + seq_length + 1) >= len(data)) or n == 0: | |
p = 0 | |
hprev = jnp.zeros((hidden_size,1)) | |
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] | |
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] | |
if n % 1000 == 0: | |
key, subkey = random.split(key) | |
sample_ix, key = sample(params, hprev, inputs[0], 200, subkey) | |
txt = ''.join(ix_to_char[ix] for ix in sample_ix) | |
print('----\n %s \n----' % (txt, )) | |
params,loss_, hprev = update(params, inputs, targets, hprev) | |
if n % 100 == 0: print('iter %d, loss: %f' % (n, loss_)) | |
n += 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment