Last active
October 22, 2020 03:09
-
-
Save mf1024/a9199a325f9f7e98309b19eb820160a7 to your computer and use it in GitHub Desktop.
Pytorch ImageNet/OpenImage Dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torch.utils.data import DataLoader, Dataset | |
from torchvision import transforms | |
import os | |
from skimage import io | |
import numpy as np | |
import time | |
from PIL import Image | |
IMG_SIZE = (128,128) | |
class ImageNetDataset(Dataset): | |
def __init__(self, data_path, is_train, train_split = 0.9, random_seed = 42, target_transform = None, num_classes = None): | |
super(ImageNetDataset, self).__init__() | |
self.data_path = data_path | |
self.is_classes_limited = False | |
if num_classes != None: | |
self.is_classes_limited = True | |
self.num_classes = num_classes | |
self.classes = [] | |
class_idx = 0 | |
for class_name in os.listdir(data_path): | |
if not os.path.isdir(os.path.join(data_path,class_name)): | |
continue | |
self.classes.append( | |
dict( | |
class_idx = class_idx, | |
class_name = class_name, | |
)) | |
class_idx += 1 | |
if self.is_classes_limited: | |
if class_idx == self.num_classes: | |
break | |
if not self.is_classes_limited: | |
self.num_classes = len(self.classes) | |
self.image_list = [] | |
for cls in self.classes: | |
class_path = os.path.join(data_path, cls['class_name']) | |
for image_name in os.listdir(class_path): | |
image_path = os.path.join(class_path, image_name) | |
self.image_list.append(dict( | |
cls = cls, | |
image_path = image_path, | |
image_name = image_name, | |
)) | |
self.img_idxes = np.arange(0,len(self.image_list)) | |
np.random.seed(random_seed) | |
np.random.shuffle(self.img_idxes) | |
last_train_sample = int(len(self.img_idxes) * train_split) | |
if is_train: | |
self.img_idxes = self.img_idxes[:last_train_sample] | |
else: | |
self.img_idxes = self.img_idxes[last_train_sample:] | |
def __len__(self): | |
return len(self.img_idxes) | |
def __getitem__(self, index): | |
img_idx = self.img_idxes[index] | |
img_info = self.image_list[img_idx] | |
img = Image.open(img_info['image_path']) | |
if img.mode == 'L': | |
tr = transforms.Grayscale(num_output_channels=3) | |
img = tr(img) | |
tr = transforms.ToTensor() | |
img1 = tr(img) | |
width, height = img.size | |
if min(width, height)>IMG_SIZE[0] * 1.5: | |
tr = transforms.Resize(int(IMG_SIZE[0] * 1.5)) | |
img = tr(img) | |
width, height = img.size | |
if min(width, height)<IMG_SIZE[0]: | |
tr = transforms.Resize(IMG_SIZE) | |
img = tr(img) | |
tr = transforms.RandomCrop(IMG_SIZE) | |
img = tr(img) | |
tr = transforms.ToTensor() | |
img = tr(img) | |
if (img.shape[0] != 3): | |
img = img[0:3] | |
return dict(image = img, cls = img_info['cls']['class_idx'], class_name = img_info['cls']['class_name']) | |
def get_number_of_classes(self): | |
return self.num_classes | |
def get_number_of_samples(self): | |
return self.__len__() | |
def get_class_names(self): | |
return [cls['class_name'] for cls in self.classes] | |
def get_class_name(self, class_idx): | |
return self.classes[class_idx]['class_name'] | |
def get_imagenet_datasets(data_path, num_classes = None): | |
random_seed = int(time.time()) | |
dataset_train = ImageNetDataset(data_path,is_train = True, random_seed=random_seed, num_classes = num_classes) | |
dataset_test = ImageNetDataset(data_path, is_train = False, random_seed=random_seed, num_classes = num_classes) | |
return dataset_train, dataset_test | |
# data_path = "/Users/martinsf/data/images_1/imagenet_images/" | |
# dataset_train, dataset_test = get_imagenet_datasets(data_path) | |
# | |
# print(f"Number of train samplest {dataset_train.__len__()}") | |
# print(f"Number of samples in test split {dataset_test.__len__()}") | |
# | |
# BATCH_SIZE = 12 | |
# | |
# data_loader_train = DataLoader(dataset_train, BATCH_SIZE, shuffle = True) | |
# data_loader_test = DataLoader(dataset_test, BATCH_SIZE, shuffle = True) | |
# | |
# | |
# import matplotlib.pyplot as plt | |
# | |
# fig, axes = plt.subplots(BATCH_SIZE//3,3, figsize=(6,10)) | |
# | |
# for batch in data_loader_train: | |
# | |
# print(f"Shape of batch['image'] {batch['image'].shape}") | |
# print(f"Shape of batch['cls'] {batch['cls'].shape}") | |
# | |
# for i in range(BATCH_SIZE): | |
# | |
# col = i % 3 | |
# row = i // 3 | |
# | |
# img = batch['image'][i].numpy() | |
# | |
# axes[row,col].set_axis_off() | |
# axes[row,col].set_title(batch['class_name'][i]) | |
# axes[row,col].imshow(np.transpose(img,(1,2,0))) | |
# | |
# plt.show() | |
# | |
# break | |
# |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you!