Last active
June 19, 2022 02:21
-
-
Save mforets/b90ab470f34736d70b0652cd6d547bab to your computer and use it in GitHub Desktop.
Discrete sequence using Taylor models
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using ReachabilityAnalysis | |
using ReachabilityAnalysis.TaylorModels | |
using ReachabilityAnalysis.TaylorSeries | |
using Random | |
using StatsBase | |
# ----------------- | |
# Numbers | |
# ----------------- | |
function run(::Type{Float64}) | |
# Choose scenario | |
n = 5 | |
u = rand(range(0.2, 0.5, length=10), n) | |
x0 = rand(-1:0.01:1 * 0.01) | |
# Propagate | |
x = zeros(n+1) | |
x[1] = x0 | |
for k in 1:n | |
x[k+1] = x[k]^2 + x[k] + u[k] | |
end | |
x | |
end | |
run() = run(Float64) | |
out = [run()[5] for _ in 1:20] | |
target = 3 .. 5 | |
@show countmap(out .∈ target) | |
# ---------------------------------- | |
# Taylor models, no uncertainty | |
# ---------------------------------- | |
function run(::Type{TaylorModel1}) | |
# Choose scenario | |
TaylorSeries.set_taylor1_varname("x") | |
n = 5 | |
ord = 6 | |
dom = interval(-1, 1) | |
u = rand(range(0.2, 0.5, length=10), n) | |
U = [TaylorModel1(ui + 0.0 * Taylor1(Float64, ord), zero(dom), zero(dom), dom) for ui in u] | |
x0 = rand(-1:0.01:1 * 0.01) | |
X0 = TaylorModel1(x0 + 0.0 * Taylor1(Float64, ord), zero(dom), zero(dom), dom) | |
# Propagate | |
X = Vector{TaylorModel1{Float64, Float64}}(undef, n+1) | |
X[1] = X0 | |
for k in 1:n | |
X[k+1] = X[k]^2 + X[k] + U[k] | |
end | |
X | |
end | |
out = [run(TaylorModel1)[5] for _ in 1:20] | |
target = 3 .. 5 | |
ovalues = [evaluate(o, -1 .. 1) for o in out] | |
@show countmap(ovalues .⊆ target) | |
# ------------------------------------- | |
# Taylor models with uncertainty in u | |
# ------------------------------------- | |
function run(::Type{TaylorModel1}, W) | |
# Choose scenario | |
TaylorSeries.set_taylor1_varname("x") | |
n = 5 | |
ord = 6 | |
dom = interval(-1, 1) | |
u = rand(range(0.2, 0.5, length=10), n) .+ W | |
x = Taylor1(Float64, ord) | |
U = [TaylorModel1(ui.hi * x + ui.lo * (1 - x), zero(dom), zero(dom), dom) for ui in u] | |
x0 = rand(-1:0.01:1 * 0.01) | |
X0 = TaylorModel1(x0 + 0.0 * x, zero(dom), zero(dom), dom) | |
# Propagate | |
X = Vector{TaylorModel1{Float64, Float64}}(undef, n+1) | |
X[1] = X0 | |
for k in 1:n | |
X[k+1] = X[k]^2 + X[k] + U[k] | |
end | |
X | |
end | |
W = interval(-0.005, 0.005) | |
out = [run(TaylorModel1, W)[5] for _ in 1:20] | |
target = 3 .. 5 | |
ovalues = [evaluate(o, -1 .. 1) for o in out] | |
@show countmap(ovalues .⊆ target) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment