-
-
Save mfurquimdev/33bcd1942c6113be95047f3c8a72e59e to your computer and use it in GitHub Desktop.
Gooey Example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser | |
from sklearn.datasets import make_classification | |
from sklearn.decomposition import PCA | |
from sklearn.manifold import LocallyLinearEmbedding | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.svm import SVC | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score | |
from gooey import Gooey | |
@Gooey # The Decorator goes here | |
def parse_args(): | |
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter, | |
conflict_handler='resolve') | |
parser.add_argument('--dim_red_type', default='PCA', choices=[ | |
'PCA','LLE'], help='The dim red. types') | |
parser.add_argument('--n_comp', default=10, type=int, choices=[ | |
5,10], help='output dimensions') | |
parser.add_argument('--classifier', default='LR', choices=[ | |
'LR','SVC','RF'], help='Classifiers') | |
args = parser.parse_args() | |
return args | |
def main(args): | |
X, y = make_classification(n_samples=1000, n_features=30, | |
n_informative=15, n_redundant=15, | |
random_state=42) | |
X_train,X_test,y_train,y_test = train_test_split(X, y,stratify=y, | |
test_size=0.3, | |
random_state=42) | |
# dimensionality reduction | |
def dim_reduction(X_train,X_test,dim_red_type,n_comp): | |
if dim_red_type == 'pca': | |
dim_red = PCA(n_components=int(n_comp)) | |
elif dim_red_type == 'lle': | |
dim_red = LocallyLinearEmbedding(n_components=int(n_comp)) | |
dim_red.fit(X_train) | |
X_train_dim = dim_red.transform(X_train) | |
X_test_dim = dim_red.transform(X_test) | |
return X_train_dim, X_test_dim | |
# model training and eval | |
def train(classifier,X_train,y_train,X_test,y_test): | |
if classifier == 'lr': | |
clf = LogisticRegression() | |
elif classifier == 'svc': | |
clf = SVC() | |
elif classifier == 'rf': | |
clf = RandomForestClassifier() | |
clf.fit(X_train,y_train) | |
y_pred = clf.predict(X_test) | |
acc_score = accuracy_score(y_test,y_pred).round(3) | |
return acc_score * 100 | |
X_train, X_test = dim_reduction(X_train,X_test,'lle',2) | |
acc_score = train('lr',X_train,y_train,X_test,y_test) | |
print(f'Dimensionality reduction: {args.dim_red_type}') | |
print(f'Number of components: {args.n_comp}') | |
print(f'Classifier: {args.classifier}') | |
print('Accuracy Score: ',acc_score) | |
print('*'*10) | |
def more_main(): | |
args = parse_args() | |
main(parse_args()) | |
if __name__ == "__main__": | |
more_main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment