Created
October 28, 2015 18:20
-
-
Save mgalardini/7cb4e3606321ccf20ba2 to your computer and use it in GitHub Desktop.
Roary plots with strain names
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Copyright (C) <2015> EMBL-European Bioinformatics Institute | |
# This program is free software: you can redistribute it and/or | |
# modify it under the terms of the GNU General Public License as | |
# published by the Free Software Foundation, either version 3 of | |
# the License, or (at your option) any later version. | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# Neither the institution name nor the name roary_plots | |
# can be used to endorse or promote products derived from | |
# this software without prior written permission. | |
# For written permission, please contact <[email protected]>. | |
# Products derived from this software may not be called roary_plots | |
# nor may roary_plots appear in their names without prior written | |
# permission of the developers. You should have received a copy | |
# of the GNU General Public License along with this program. | |
# If not, see <http://www.gnu.org/licenses/>. | |
__author__ = "Marco Galardini" | |
__version__ = '0.1.0' | |
def get_options(): | |
import argparse | |
# create the top-level parser | |
description = "Create plots from roary outputs" | |
parser = argparse.ArgumentParser(description = description, | |
prog = 'roary_plots.py') | |
parser.add_argument('tree', action='store', | |
help='Newick Tree file', default='accessory_binary_genes.fa.newick') | |
parser.add_argument('spreadsheet', action='store', | |
help='Roary gene presence/absence spreadsheet', default='gene_presence_absence.csv') | |
parser.add_argument('--version', action='version', | |
version='%(prog)s '+__version__) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
options = get_options() | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
sns.set_style('white') | |
import os | |
import pandas as pd | |
import numpy as np | |
from Bio import Phylo | |
t = Phylo.read(options.tree, 'newick') | |
# Max distance to create better plots | |
mdist = max([t.distance(t.root, x) for x in t.get_terminals()]) | |
# Load roary | |
roary = pd.read_table(options.spreadsheet, | |
sep=',', | |
low_memory=False) | |
# Set index (group name) | |
roary.set_index('Gene', inplace=True) | |
# Drop the other info columns | |
roary.drop(list(roary.columns[:10]), axis=1, inplace=True) | |
# Transform it in a presence/absence matrix (1/0) | |
roary.replace('.{2,100}', 1, regex=True, inplace=True) | |
roary.replace(np.nan, 0, regex=True, inplace=True) | |
# Sort the matrix by the sum of strains presence | |
idx = roary.sum(axis=1).order(ascending=False).index | |
roary_sorted = roary.ix[idx] | |
# Pangenome frequency plot | |
plt.figure(figsize=(7, 5)) | |
plt.hist(roary.sum(axis=1), roary.shape[1], | |
histtype="stepfilled", alpha=.7) | |
plt.xlabel('Number of genomes') | |
plt.ylabel('Number of genes') | |
sns.despine(left=True, | |
bottom=True) | |
plt.savefig('pangenome_frequency.png') | |
plt.clf() | |
# Sort the matrix according to tip labels in the tree | |
roary_sorted = roary_sorted[[x.name for x in t.get_terminals()]] | |
# Plot presence/absence matrix against the tree | |
with sns.axes_style('white'): | |
fig = plt.figure(figsize=(17, 10)) | |
ax1=plt.subplot2grid((1,40), (0, 10), colspan=30) | |
a=ax1.matshow(roary_sorted.T, cmap=plt.cm.Blues, | |
vmin=0, vmax=1, | |
aspect='auto', | |
interpolation='none', | |
) | |
ax1.set_yticks([]) | |
ax1.set_xticks([]) | |
ax1.set_yticklabels(list(roary_sorted.columns), | |
# Here change font size | |
# (can also be a numeral) | |
size='small') | |
# | |
#ax1.axis('off') | |
ax = fig.add_subplot(1,2,1) | |
ax=plt.subplot2grid((1,40), (0, 0), colspan=10, axisbg='white') | |
fig.subplots_adjust(wspace=0, hspace=0) | |
ax1.set_title('Roary matrix\n(%d gene clusters)'%roary.shape[0]) | |
Phylo.draw(t, axes=ax, | |
show_confidence=False, | |
label_func=lambda x: None, | |
xticks=([],), yticks=([],), | |
ylabel=('',), xlabel=('',), | |
# Here change the "mdist+0.01" to correct for tree offset | |
xlim=(-0.01,mdist+0.01), | |
# | |
axis=('off',), | |
title=('parSNP tree\n(%d strains)'%roary.shape[1],), | |
do_show=False, | |
) | |
plt.savefig('pangenome_matrix.png') | |
plt.clf() | |
# Plot the pangenome pie chart | |
plt.figure(figsize=(10, 10)) | |
core = roary[(roary.sum(axis=1) >= roary.shape[1]*0.99) & (roary.sum(axis=1) <= roary.shape[1] )].shape[0] | |
softcore = roary[(roary.sum(axis=1) >= roary.shape[1]*0.95) & (roary.sum(axis=1) < roary.shape[1]*0.99)].shape[0] | |
shell = roary[(roary.sum(axis=1) >= roary.shape[1]*0.15) & (roary.sum(axis=1) < roary.shape[1]*0.95)].shape[0] | |
cloud = roary[roary.sum(axis=1) < roary.shape[1]*0.15].shape[0] | |
total = roary.shape[0] | |
def my_autopct(pct): | |
val=int(round(pct*total/100.0)) | |
return '{v:d}'.format(v=val) | |
a=plt.pie([core, softcore, shell, cloud], | |
labels=['core\n(%d <= strains <= %d)'%(roary.shape[1]*.99,roary.shape[1]), | |
'soft-core\n(%d <= strains < %d)'%(roary.shape[1]*.95,roary.shape[1]*.99), | |
'shell\n(%d <= strains < %d)'%(roary.shape[1]*.15,roary.shape[1]*.95), | |
'cloud\n(strains < %d)'%(roary.shape[1]*.15)], | |
explode=[0.1, 0.05, 0.02, 0], radius=0.9, | |
colors=[(0, 0, 1, float(x)/total) for x in (core, softcore, shell, cloud)], | |
autopct=my_autopct) | |
plt.savefig('pangenome_pie.png') | |
plt.clf() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment