-
-
Save mgmarino/7b3c44ff4b94ccd97daa to your computer and use it in GitHub Desktop.
allan deviaton
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def allanVar(data, sf=1): | |
''' | |
calculates allan variance | |
according to eq 8.13a in | |
David W. Allan, John H. Shoaf and Donald Halford: Statistics of Time and Frequency Data Analysis, | |
NBS Monograph 140, pages 151–204, 1974 | |
''' | |
nd = np.array(data) | |
# list of integration lengths | |
# Note, this avoids using the full length! | |
integration_lengths = np.unique(len(nd)/np.arange(1, len(nd)+1))[:-1] | |
av = [] | |
for anint in integration_lengths: | |
# Shorten array if necessary | |
shorten_by = len(nd) % anint | |
thend = nd | |
if shorten_by != 0: | |
thend = nd[:-shorten_by] | |
# reshape and calculate mean | |
x = thend.reshape(-1, anint).mean(axis=1) | |
# Save the deviation | |
av.append([anint*sf, ((x[1:] - x[:-1])**2).mean()/2]) | |
return np.array(av) | |
def allanDev(data, sf=1): | |
alv = allanVar(data, sf) | |
alv[:,1] = np.sqrt(alv[:,1]) | |
return alv | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment