Skip to content

Instantly share code, notes, and snippets.

@mgomes
Last active March 19, 2019 03:33
Show Gist options
  • Save mgomes/e9051e888791bc55b2217c9459c7df9f to your computer and use it in GitHub Desktop.
Save mgomes/e9051e888791bc55b2217c9459c7df9f to your computer and use it in GitHub Desktop.
Deep Neural Net
import tensorflow as tf
print(tf.__version__)
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('loss')<0.4):
print("\nReached 60% accuracy so cancelling training!")
self.model.stop_training = True
callbacks = myCallback()
mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels), (test_images, test_labels) = mnist.load_data()
training_images=training_images/255.0
test_images=test_images/255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(training_images, training_labels, epochs=5, callbacks=[callbacks])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment