Last active
October 24, 2016 04:11
-
-
Save mgritter/e11ce48beef1811feb6a2cab9b439f16 to your computer and use it in GitHub Desktop.
Iteration 2 of using NNMF to blend pixel art
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.misc import imread | |
import numpy as np | |
# These are flower images from the PROJCAM garden bundle. | |
path = "C:\Users\Mark\Documents\ProcJam\PROCJAM2016-Tess2D\PROCJAM2016-Tess2D\Garden\\" | |
names = [ "flower{:02d}.png".format( i ) for i in xrange( 0, 22 ) ] | |
original = [ imread( path + name ) for name in names ] | |
def flatten( image ): | |
return np.reshape( image, [-1] ) | |
palette = set() | |
for image in original: | |
for row in image: | |
for color in row: | |
palette.add( tuple( color ) ) | |
transparent = False | |
for (r,g,b,a) in list( palette ): | |
if a == 0: # transparent | |
transparent = True | |
palette.remove( (r,g,b,a) ) | |
if transparent: | |
palette.add( (255, 255, 255, 0) ) | |
palette = list( palette ) | |
print "Palette", palette | |
def convertToPalette( image ): | |
px = [] | |
for pixel in np.reshape( image, [-1, 4] ): | |
(r, g, b, a ) = pixel | |
if a == 0: | |
pixel = ( 255, 255, 255, 0 ) | |
vec = [ int( tuple(pixel) == palette[i] ) for i in xrange( len( palette ) ) ] | |
px.append( vec ) | |
newRep = np.array( px ) | |
return np.reshape( newRep, [-1] ) | |
from math import sqrt | |
def convertToRgb( image ): | |
y = len( palette ) | |
pixels = np.reshape( image, [-1, y] ) | |
pa = np.array( palette ) | |
# Normalize to 1.0 | |
row_sums = pixels.sum( axis = 1, keepdims = True ) | |
normalized = pixels / row_sums | |
rgbVec = normalized.dot( pa ) | |
dim = int( sqrt( len( rgbVec ) ) ) | |
rgbMat = np.reshape( rgbVec, [dim, dim, 4] ) | |
return np.array( rgbMat, dtype="uint8" ) | |
# Matrix V has shape [samples, feature] | |
# Each sample is an image, each feature is the presence of a palette color | |
# in a pixel | |
V = np.matrix( [ convertToPalette( i ) for i in original ] ) | |
(numSamples, numFeatures) = V.shape | |
print "Samples: ", numSamples | |
print "Features: ", numFeatures | |
from sklearn.decomposition import NMF | |
import matplotlib.pyplot as plt | |
import matplotlib.image as mpimg | |
def trial( numComponents = 22, max_iter = 10000 ): | |
model = NMF( n_components= numComponents, max_iter=max_iter ) | |
W = model.fit_transform( V ) | |
H = model.components_ | |
# Matrix W has shape [ samples, components ] | |
# Matrix H has shape [ components, features ] | |
print "Error", model.reconstruction_err_ | |
X2 = model.inverse_transform( W ) | |
plt.figure( 1 ) | |
numImages = len( names ) | |
for n in xrange( numImages ): | |
# original | |
o = original[n] | |
plt.subplot( numImages, 2, n * 2 + 1 ) | |
plt.imshow( o, interpolation = "none" ) | |
plt.axis( "off" ) | |
# reconstruction | |
p = convertToRgb( X2[n] ) | |
plt.subplot( numImages, 2, n * 2 + 2 ) | |
plt.imshow( p, interpolation = "none" ) | |
plt.axis( "off" ) | |
plt.show() | |
# return ( model, W, H ) | |
def mixAll( numComponents = 22, max_iter = 10000 ): | |
model = NMF( n_components= numComponents, max_iter=max_iter ) | |
W = model.fit_transform( V ) | |
H = model.components_ | |
# Matrix W has shape [ samples, components ] | |
# Matrix H has shape [ components, features ] | |
plt.figure( 1 ) | |
numImages = len( names ) | |
for a in xrange( numImages ): | |
for b in xrange( numImages ): | |
plt.subplot( numImages, numImages, numImages * a + b + 1 ) | |
if a == b: | |
plt.imshow( original[a], interpolation = "none" ) | |
elif a < b: | |
wa = W[a] | |
wb = W[b] | |
wi = ( wa + wb ) * 0.5 | |
x = wi.dot( H ) | |
plt.imshow( convertToRgb( x ), interpolation = "none" ) | |
plt.axis( "off" ) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment