approximation function for natural logarithm
# ln=(x,a=2**32)=>a*x**(1/a)-a
#ln=lambda x,a=1<<32:a*x**(1/a)-a
ln=lambda x,a=1<<32:a*(x**(1/a)-1)
>>> numpy.log(400) - ln(400)
-6.776018235399306e-08
经典(牛顿引力)
广义相对论
T = \begin{pmatrix}
T_{00} & T_{01} & T_{02} & T_{03} \\
T_{10} & T_{11} & T_{12} & T_{13} \\
T_{20} & T_{21} & T_{22} & T_{23} \\
T_{30} & T_{31} & T_{32} & T_{33}
\end{pmatrix}
$$
\begin{aligned}
& \phi(x,y) = \phi \left(\sum_{i=1}^n x_ie_i, \sum_{j=1}^n y_je_j \right)
= \sum_{i=1}^n \sum_{j=1}^n x_i y_j \phi(e_i, e_j) = \\
& (x_1, \ldots, x_n) \left( \begin{array}{ccc}
\phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \\
\vdots & \ddots & \vdots \\
\phi(e_n, e_1) & \cdots & \phi(e_n, e_n)
\end{array} \right)
\left( \begin{array}{c}
y_1 \\
\vdots \\
y_n
\end{array} \right)
\end{aligned}
$$
equivalence of euler formula and matrix transform