Last active
November 9, 2023 16:40
-
-
Save mh0w/db82fee4817fd94736399351bd213656 to your computer and use it in GitHub Desktop.
intro_to_polars
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Sources: | |
https://pola-rs.github.io/polars/getting-started/intro | |
https://kevinheavey.github.io/modern-polars/ | |
.../DAP_CATS/intro_to_polars/-/tree/main?ref_type=heads | |
""" | |
import polars as pl | |
from datetime import date, datetime | |
import numpy as np | |
s = pl.Series("a", [1, 2, 3, 4, 5]) | |
print(s) | |
print(s.min()) | |
print(s.max()) | |
s2 = s.str.replace("polar", "pola") | |
start = date(2001, 1, 1) | |
stop = date(2001, 1, 9) | |
s = pl.date_range(start, stop, interval="2d", eager=True) | |
print(s.dt.day()) | |
df = pl.DataFrame( | |
{ | |
"my_integer_var": [1, 2, 3, 4, 5], | |
"my_date_var": [ | |
datetime(2022, 1, 1), | |
datetime(2022, 1, 2), | |
datetime(2022, 1, 3), | |
datetime(2022, 1, 4), | |
datetime(2022, 1, 5), | |
], | |
"my_float_var": [4.0, 5.0, 6.0, 7.0, 8.0], | |
} | |
) | |
print(df) | |
print(df.head(3)) | |
print(df.tail(3)) | |
print(df.sample(2)) | |
print(df.describe()) | |
df.write_csv("C:/Users/hawkem/temp/output.csv") | |
df_csv = pl.read_csv("C:/Users/hawkem/temp/output.csv", try_parse_dates=True) | |
print(df_csv) | |
df.write_json("C:/Users/hawkem/temp/output.json") | |
df_json = pl.read_json("C:/Users/hawkem/temp/output.json") | |
print(df_json) | |
df.write_parquet("C:/Users/hawkem/temp/output.parquet") | |
df_parquet = pl.read_parquet("C:/Users/hawkem/temp/output.parquet") | |
print(df_parquet) | |
####################################################### | |
# Expressions; select, filter, with_columns, group_by # | |
####################################################### | |
# To select a col, we define the df we want data from & select the data we need | |
df.select(pl.col("*")) | |
df.select(pl.col("my_date_var", "my_float_var")).limit(3) | |
df.select(pl.exclude("my_date_var")) | |
# The filter option allows us to create a subset of the df | |
df.filter(pl.col("my_date_var").is_between(datetime(2022, 1, 2), datetime(2022, 1, 4)),) | |
df.filter((pl.col("my_integer_var") <= 3) & (pl.col("my_float_var").is_not_nan())) | |
# with_columns allows you to create new columns | |
df.with_columns(pl.col("my_integer_var").sum().alias("new_col_a"), (pl.col("my_float_var") + 42).alias("fl+42")) | |
df2 = pl.DataFrame( | |
{ | |
"x": np.arange(0, 8), | |
"y": ["A", "A", "A", "B", "B", "C", "X", "X"], | |
} | |
) | |
# group_by | |
df2.group_by("y", maintain_order=True).agg( | |
pl.col("*").count().alias("count"), | |
pl.col("*").sum().alias("sum"), | |
) | |
# You can of course chain various expressions | |
df.with_columns((pl.col("my_integer_var") * pl.col("my_float_var")).alias("my_integer_var * my_float_var")).select( | |
pl.all().exclude(["my_date_var"]) | |
) | |
#### | |
# Combining dataframes | |
#### | |
df = pl.DataFrame( | |
{ | |
"a": np.arange(0, 8), | |
"b": np.random.rand(8), | |
"d": [1, 2.0, np.NaN, np.NaN, 0, -5, -42, None], | |
} | |
) | |
df2 = pl.DataFrame( | |
{ | |
"x": np.arange(0, 8), | |
"y": ["A", "A", "A", "B", "B", "C", "X", "X"], | |
"z": np.arange(8, 0, -1), | |
} | |
) | |
# Merge/join | |
df.join(df2, left_on="a", right_on="x") | |
# Concatinate horizontally (see also vstack for concatinating vertically) | |
df.hstack(df2) | |
################## | |
# Other commands # | |
################## | |
df.dtypes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment