Created
April 4, 2024 14:40
-
-
Save mht-sharma/290f7bf9052e92023b4136c6fefd6717 to your computer and use it in GitHub Desktop.
Llava optimum ONNX inference
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from typing import List, Optional, Tuple | |
import onnxruntime as onnxrt | |
import requests | |
import torch | |
from PIL import Image | |
from transformers import AutoConfig, AutoProcessor, GenerationConfig, PreTrainedModel | |
from transformers.generation import GenerationMixin | |
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast | |
from optimum.utils import NormalizedConfigManager | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
device = torch.device("cpu") | |
model_name = "llava-1.5-7b-hf/" | |
processor = AutoProcessor.from_pretrained(model_name) | |
config = AutoConfig.from_pretrained(model_name) | |
prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:" | |
url = "https://www.ilankelman.org/stopsigns/australia.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
inputs = processor(text=prompt, images=image, return_tensors="pt") | |
class ORTModel(torch.nn.Module): | |
def __init__(self, path, config): | |
super().__init__() | |
self._device = device | |
self.config = config | |
self.session = onnxrt.InferenceSession(path, providers=["CPUExecutionProvider"]) | |
self.input_names = {input_key.name: idx for idx, input_key in enumerate(self.session.get_inputs())} | |
self.output_names = {output_key.name: idx for idx, output_key in enumerate(self.session.get_outputs())} | |
class ORTEncoder(ORTModel): | |
def forward( | |
self, | |
input_ids: torch.FloatTensor, | |
pixel_values: torch.FloatTensor, | |
attention_mask: torch.LongTensor, | |
**kwargs, | |
) -> BaseModelOutput: | |
onnx_inputs = { | |
"input_ids": input_ids.cpu().detach().numpy(), | |
"pixel_values": pixel_values.cpu().detach().numpy(), | |
"attention_mask": attention_mask.cpu().detach().numpy(), | |
} | |
# Run inference | |
outputs = self.session.run(None, onnx_inputs) | |
for i, output in enumerate(outputs): | |
outputs[i] = torch.from_numpy(output).to(self._device) | |
return ( | |
outputs[self.output_names["inputs_embeds"]], | |
outputs[self.output_names["decoder_attention_mask"]], | |
outputs[self.output_names["position_ids"]], | |
) | |
class ORTDecoderProcessor(ORTModel): | |
def forward( | |
self, | |
input_ids: torch.FloatTensor, | |
attention_mask: torch.LongTensor, | |
past_key_value: torch.FloatTensor, | |
**kwargs, | |
) -> BaseModelOutput: | |
onnx_inputs = { | |
"input_ids": input_ids.cpu().detach().numpy(), | |
"attention_mask": attention_mask.cpu().detach().numpy(), | |
"past_key_values.0.key": past_key_value.cpu().detach().numpy(), | |
} | |
# Run inference | |
outputs = self.session.run(None, onnx_inputs) | |
for i, output in enumerate(outputs): | |
outputs[i] = torch.from_numpy(output).to(self._device) | |
return ( | |
outputs[self.output_names["inputs_embeds"]], | |
outputs[self.output_names["decoder_attention_mask"]], | |
outputs[self.output_names["position_ids"]], | |
) | |
class ORTDecoder(ORTModel): | |
def __init__(self, path, config): | |
super().__init__(path, config) | |
self.normalized_config = NormalizedConfigManager.get_normalized_config_class(config.text_config.model_type)( | |
config.text_config | |
) | |
self.generation_config = GenerationConfig.from_model_config(config) | |
self.key_value_input_names = [key for key in self.input_names if (".key" in key) or (".value" in key)] | |
self.key_value_output_names = [key for key in self.output_names if (".key" in key) or (".value" in key)] | |
self.num_pkv = 2 | |
def prepare_pkv(self, batch_size: int): | |
if self.config.text_config.model_type in {"mistral", "llama"}: | |
num_attention_heads = self.normalized_config.num_key_value_heads | |
else: | |
num_attention_heads = self.normalized_config.num_attention_heads | |
embed_size_per_head = self.normalized_config.hidden_size // self.normalized_config.num_attention_heads | |
shape = (batch_size, num_attention_heads, 0, embed_size_per_head) | |
key_or_value = torch.zeros(shape, dtype=torch.float32) | |
past_key_values = tuple(key_or_value for _ in range(len(self.key_value_input_names))) | |
return past_key_values | |
def forward( | |
self, | |
attention_mask: torch.LongTensor, | |
position_ids: torch.LongTensor, | |
inputs_embeds: torch.FloatTensor, | |
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, | |
) -> CausalLMOutputWithPast: | |
onnx_inputs = { | |
"attention_mask": attention_mask.cpu().detach().numpy(), | |
"position_ids": position_ids.cpu().detach().numpy(), | |
"inputs_embeds": inputs_embeds.cpu().detach().numpy(), | |
} | |
if past_key_values is None: | |
past_key_values = self.prepare_pkv(inputs_embeds.shape[0]) | |
else: | |
past_key_values = tuple( | |
past_key_value for pkv_per_layer in past_key_values for past_key_value in pkv_per_layer | |
) | |
for input_name, past_key_value in zip(self.key_value_input_names, past_key_values): | |
onnx_inputs[input_name] = past_key_value.cpu().detach().numpy() | |
# Run inference | |
outputs = self.session.run(None, onnx_inputs) | |
logits = torch.from_numpy(outputs[self.output_names["logits"]]) | |
past_key_values = tuple( | |
torch.from_numpy(outputs[self.output_names[key]]) for key in self.key_value_output_names | |
) | |
past_key_values = tuple( | |
past_key_values[i : i + self.num_pkv] for i in range(0, len(past_key_values), self.num_pkv) | |
) | |
return CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values) | |
class ORTModelForLLava(PreTrainedModel, GenerationMixin): | |
def __init__(self, *args, **kwargs): | |
config = AutoConfig.from_pretrained(model_name) | |
super().__init__(config) | |
self.config = config | |
self._device = device | |
self.vision_tower = ORTEncoder(model_name + "encoder_model.onnx", config) | |
self.language_model = ORTDecoder(model_name + "decoder_model.onnx", config) | |
self.decoder_input_processor = ORTDecoderProcessor(model_name + "decoder_input_processor_model.onnx", config) | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
pixel_values: torch.FloatTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
**kwargs, | |
) -> CausalLMOutputWithPast: | |
if past_key_values is None: | |
inputs_embeds, attention_mask, position_ids = self.vision_tower( | |
input_ids=input_ids, | |
pixel_values=pixel_values, | |
attention_mask=attention_mask, | |
) | |
else: | |
inputs_embeds, attention_mask, position_ids = self.decoder_input_processor( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
past_key_value=past_key_values[0][0][:, :, :, 0], | |
) | |
# Decode | |
decoder_outputs = self.language_model( | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values=past_key_values, | |
) | |
return decoder_outputs | |
def can_generate(self): | |
return True | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs | |
): | |
if past_key_values is not None: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
elif self.config.image_token_index in input_ids: | |
input_ids = input_ids[:, input_ids.shape[1] - 1 :] | |
if cache_length < past_length and attention_mask is not None: | |
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
} | |
) | |
return model_inputs | |
@property | |
def device(self) -> torch.device: | |
return self._device | |
@device.setter | |
def device(self, value: torch.device): | |
self._device = value | |
def to(self, device): | |
self.device = device | |
return self | |
model = ORTModelForLLava() | |
generated_ids = model.generate(**inputs, max_length=30) | |
out = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
print(out) |
hello, thanks for your share! @mht-sharma ,Are the onnx files of vision_tower and language_model saved separately through llava?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
thanks