Last active
August 24, 2018 13:35
-
-
Save mia-0032/6309113 to your computer and use it in GitHub Desktop.
Pythonで基本的な統計量を出力してみる
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding:utf-8 -*- | |
import numpy | |
from scipy import stats | |
n = 200 | |
#正規分布にあてはまる乱数を生成 | |
score_x = numpy.random.normal(171.77, 5.54, n) | |
score_y = numpy.random.normal(62.49, 7.89, n) | |
#適当にちょっとノイズ入れる | |
score_x.sort() | |
score_x = numpy.around(score_x + numpy.random.normal(scale=3.0, size=n), 2) | |
score_y.sort() | |
score_y = numpy.around(score_y + numpy.random.normal(size=n), 2) | |
#最大値 | |
print "Max x: " + str(numpy.max(score_x)) + " y: " + str(numpy.max(score_y)) | |
#最小値 | |
print "Min x: " + str(numpy.min(score_x)) + " y: " + str(numpy.min(score_y)) | |
#平均値 | |
print "Avg x: " + str(numpy.mean(score_x)) + " y: " + str(numpy.mean(score_y)) | |
#第1四分位 | |
print "1Q x:" + str(stats.scoreatpercentile(score_x, 25)) + " y: " + str(stats.scoreatpercentile(score_y, 25)) | |
#中央値 | |
print "Med x: " + str(numpy.median(score_x)) + " y: " + str(numpy.median(score_y)) | |
#第3四分位 | |
print "3Q x:" + str(stats.scoreatpercentile(score_x, 75)) + " y: " + str(stats.scoreatpercentile(score_y, 75)) | |
#分散 | |
print "Var x: " + str(numpy.var(score_x)) + " y: " + str(numpy.var(score_y)) | |
#標準偏差 | |
print "S.D. x: " + str(numpy.std(score_x)) + " y:" + str(numpy.std(score_y)) | |
#相関係数 | |
cor = numpy.corrcoef(score_x, score_y) | |
print "Correlation Coefficient : " + str(cor[0,1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment