Created
September 24, 2015 20:38
-
-
Save michael-erasmus/ad16c57cf48eb95a4b63 to your computer and use it in GitHub Desktop.
Tf-idf example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import math | |
import re | |
import pandas as pd | |
from collections import Counter | |
from sklearn.datasets import fetch_20newsgroups | |
#get a subset of the dataset | |
categories = [ | |
'alt.atheism', | |
'talk.religion.misc', | |
'comp.graphics', | |
'sci.space', | |
] | |
docs_data = fetch_20newsgroups(subset='train', categories=categories, | |
shuffle=True, random_state=42, | |
remove=('headers', 'footers', 'quotes')) | |
#build a pandas dataframe using the filename and data of each post | |
docs = pd.DataFrame({ | |
'filename' : docs_data.filenames, | |
'data': docs_data.data | |
}) | |
#grab the corpus size(we'll use this later for IDF) | |
corpus_size = len(docs) | |
#no let's do some basic cleaning up of the text, make everything lower case and strip out all non-letters | |
docs['words'] = docs.data.apply(lambda doc: re.sub("[\W\d]", " ", doc.lower().strip()).split()) | |
#let's calculate the word frequencies for each document (Bag of words) | |
docs['frequencies'] = docs.words.apply(lambda words: Counter(words)) | |
#cool, now we can calculate TF, the log+1 of the frequency of each word | |
docs['log_frequencies'] = docs.frequencies.apply(lambda d: dict([(k,math.log(v) + 1) for k, v in d.iteritems()])) | |
#now let's build up a lookup list of document frequencies | |
#first we build a vocabulary for our corpus(set of unique words) | |
corpus_vocab = set([word for words in docs.words for word in words]) | |
#now use the vocabulary to find the document frequency for each word | |
df = lambda word: len(docs[docs.words.apply(lambda w: word in w)]) | |
corpus_vocab_dfs = dict([(word,math.log(corpus_size / df(word))) for word in corpus_vocab]) | |
#phew! no let's put it all together. let's calculate tf*idf for each term | |
tfidf = lambda tfs: dict([(k,v * corpus_vocab_dfs[k]) for k, v in tfs.iteritems()]) | |
docs['tfidf'] = docs.log_frequencies.apply(tfidf) | |
#finally we can grab the top 5 weighted terms to get keywords for each document | |
sorted(docs.tfidf[0], key=docs.tfidf[0].get, reverse=True)[0:5] | |
docs['keywords'] = docs.tfidf.apply(lambda t: sorted(t, key=t.get, reverse=True)[0:5]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment