Created
March 14, 2018 19:24
-
-
Save michaelballantyne/21758dc5e2e1afe38acbd2ff2edba4bb to your computer and use it in GitHub Desktop.
An example of tagless final embedding in Hackett, with full extensibility for language, interpretations, and syntactic sugar.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang hackett | |
(require (only-in racket module quote let-syntax define-for-syntax define-syntax for-syntax) | |
(for-syntax racket syntax/parse)) | |
; Helper for syntax stuff later | |
(module deflang racket | |
(require (for-syntax syntax/parse)) | |
(provide define-language define-language-syntax) | |
(begin-for-syntax | |
(struct language (introducer) | |
#:property prop:procedure | |
(lambda (inst stx) | |
(syntax-parse stx | |
[(_ e) | |
((language-introducer inst) #'e)])))) | |
(define-syntax define-language | |
(syntax-parser | |
[(_ name) | |
#'(define-syntax name | |
(language (make-syntax-introducer)))])) | |
(define-syntax define-language-syntax | |
(syntax-parser | |
[(_ lang form transformer) | |
(define intro | |
(language-introducer | |
(syntax-local-value #'lang))) | |
#`(define-syntax #,(intro #'form) | |
transformer)]))) | |
(require 'deflang) | |
; Define a language interface with tagless final | |
(class (Symantics repr) | |
[int : (-> Integer (repr Integer))] | |
[add : (-> (repr Integer) | |
(-> (repr Integer) | |
(repr Integer)))] | |
[lam : (∀ (a b) | |
(-> (-> (repr a) (repr b)) | |
(repr (-> a b))))] | |
[app : (∀ (a b) | |
(-> (repr (-> a b)) | |
(-> (repr a) | |
(repr b))))]) | |
; An interpretation that evaluates terms | |
; metacircularly with Hackett | |
(data (R a) (R a)) | |
(defn unR : (∀ (a) (-> (R a) a)) | |
[[(R x)] x]) | |
(instance (Symantics R) | |
[int (λ [x] (R x))] | |
[add (λ [e1 e2] (R (+ (unR e1) | |
(unR e2))))] | |
[lam (λ [f] (R (λ [x] (unR (f (R x))))))] | |
[app (λ [e1 e2] (R ((unR e1) (unR e2))))]) | |
(def foo : (∀ [repr] (Symantics repr) => (repr Integer)) | |
(app | |
(lam (λ [x] (add (app x (int 1)) (int 2)))) | |
(lam (λ [x] (int 1))))) | |
; Add syntactic sugar | |
(define-language tagless-lang) | |
(define-language-syntax tagless-lang λ | |
(syntax-parser | |
[(_ (x) body) | |
#'(#%app lam (λ [x] body))])) | |
(define-language-syntax tagless-lang #%datum | |
(syntax-parser | |
[(_ ~rest e) | |
#`(#%app int #,(cons #'#%datum #'e))])) | |
(define-language-syntax tagless-lang #%app | |
(syntax-parser | |
[(_ e1 e2) | |
#'(#%app app e1 e2)])) | |
(define-language-syntax tagless-lang + | |
(syntax-parser | |
[(_ e1 e2) | |
#`(#%app add e1 e2)])) | |
; Now we can write terms of the tagless final DSL | |
; with nice syntax | |
(def foo2 : (∀ [repr] (Symantics repr) => (repr Integer)) | |
(tagless-lang | |
((λ [x] (+ (x 1) 2)) | |
(λ [x] 1)))) | |
; Extend the language with multiplication | |
; Interface | |
(class (MulSym repr) | |
[mul : (-> (repr Integer) | |
(-> (repr Integer) | |
(repr Integer)))]) | |
; Interpreter | |
(instance (MulSym R) | |
[mul (λ [e1 e2] (R (* (unR e1) (unR e2))))]) | |
; Syntax | |
(define-language-syntax tagless-lang * | |
(syntax-parser | |
[(_ e1 e2) | |
#`(#%app mul e1 e2)])) | |
; And an example program. With better inference | |
; we wouldn't have to write the type. | |
(def foo3 : (∀ [repr] (Symantics repr) (MulSym repr) => (repr Integer)) | |
(tagless-lang | |
(* 5 | |
((λ [x] (+ (x 1) 2)) | |
(λ [x] 1))))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment