Created
February 24, 2023 19:05
-
-
Save michaelchughes/cacef0692d86ef3fb27b60e84a588890 to your computer and use it in GitHub Desktop.
Demo of JAX applied to a stack of a list to avoid item assignment
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import jax | |
import jax.numpy as jnp | |
import jax.nn | |
def calc_trans_mat(x_TD, r_KD, p_KK): | |
''' Compute transition matrix for each timestep | |
Args | |
---- | |
x_TD : 2D array, (T,D) | |
Observed features in time series | |
r_KD : 2D array, (K,D) | |
Weight matrix | |
p_KK : 2D array, (K,K) | |
Transition probability matrix | |
Rows sum to one | |
Returns | |
------- | |
trans_TKK : 3D array, (T-1, K, K) | |
transition matrix for each timestep | |
''' | |
rx_TK1 = jnp.einsum("kd,td->tk", r_KD, x_TD)[:,np.newaxis] | |
trans_t_1KK_list = [] | |
for t in range(1,T): | |
eta_t_KK = rx_TK1[t-1, :] + jnp.log(p_KK) | |
trans_t_KK = jax.nn.softmax(eta_t_KK, axis=1) | |
# rows of trans_t_KK sum to one | |
trans_t_1KK_list.append(trans_t_KK[np.newaxis,:,:]) | |
# stack each element of shape (1,K,K) into array of (T, K, K) | |
return jnp.vstack(trans_t_1KK_list) | |
if __name__ == '__main__': | |
T = 6 | |
D = 2 | |
K = 3 | |
prng = np.random.RandomState(101) | |
x_TD = prng.randn(T,D) | |
r_KD = prng.randn(K,D) | |
p_KK = prng.rand(K, K) | |
p_KK /= p_KK.sum(axis=1, keepdims=1) | |
trans_TKK = calc_trans_mat(x_TD, r_KD, p_KK) | |
for t in range(T-1): | |
print(trans_TKK[t]) | |
def calc_loss(r_KD): | |
trans_TKK = calc_trans_mat(x_TD, r_KD, p_KK) | |
return jnp.sum(jnp.log(trans_TKK)) | |
print("calc_loss") | |
print(calc_loss(r_KD)) | |
calc_grad = jax.grad(calc_loss) | |
print("calc_grad wrt r_KD") | |
print(calc_grad(r_KD)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment