Created
September 18, 2019 22:51
-
-
Save michaelchughes/e550d509624eae1305de7cdeb3dd8382 to your computer and use it in GitHub Desktop.
Collapsing DataFrame by subject
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import time | |
prng = np.random.RandomState(0) | |
n_subj = 20000 | |
n_rows = 1000000 | |
# Randomly assign to one of 20000 subjects | |
subj_N = np.sort(prng.randint(low=0, high=n_subj, size=n_rows)) | |
# Create 3 random columns of data | |
x_ND = prng.randn(n_rows, 3) | |
# Combine into one big dataframe | |
df = pd.DataFrame( np.hstack([ | |
subj_N[:,np.newaxis], | |
x_ND]), | |
columns=['subj', 'x1', 'x2', 'x3']) | |
# Print out first few lines | |
df.head() | |
df.tail() | |
# Compute "fenceposts" that delineate start/stop of each subject | |
fp = np.hstack([0, 1+np.flatnonzero(np.diff(subj_N)), subj_N.size]) | |
assert fp.size == (n_subj+1) | |
start_time = time.time() | |
mean_of_x1 = np.zeros(n_subj) | |
for p in range(n_subj): | |
start = fp[p] | |
stop = fp[p+1] | |
mean_of_x1[p] = np.mean(df['x1'].values[start:stop], axis=0) | |
elapsed_time_sec = time.time() - start_time | |
print("Computed the per-subj mean of %d subjects and %d rows in %.2f sec" % (n_subj, n_rows, elapsed_time_sec)) | |
## Double check that a few random subjects were computed correctly | |
for subj in [0, 333, 2345, 16789, subj_N.max()]: | |
row_mask = df['subj'] == subj | |
per_subj_mean = np.mean(df['x1'].values[row_mask]) | |
print(per_subj_mean) | |
print(mean_of_x1[subj]) | |
assert np.allclose(per_subj_mean, mean_of_x1[subj]) | |
print("Check for subj %d PASSED" % subj) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment