Created
July 31, 2025 01:15
-
-
Save michaelfortunato/f35014dd8640ccb6ad9b8a6f4b281957 to your computer and use it in GitHub Desktop.
Neural Network Fundamentals
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train( | |
model: MikesNN, | |
train_loader: DataLoader, | |
config: ExperimentConfig, | |
logger: Logger | None = None, | |
): | |
num_epochs = config.num_epochs | |
learning_rate = config.learning_rate | |
device = config.device | |
logger = logger or StdoutLogger() | |
model.to(device) | |
model.train() | |
optimizer = AdamW(model.parameters(), lr=learning_rate) | |
criteria = F.mse_loss | |
for i in range(num_epochs): | |
progress_bar = tqdm(train_loader) | |
epoch_losses = [] | |
for batch_idx, batch in enumerate(progress_bar): | |
batch.to(device) | |
optimizer.zero_grad() | |
# loss = criteria(model(batch), batch.y.unsqueeze(1).float()) | |
loss = criteria(model(batch), batch.y.unsqueeze(1).float()) | |
loss.backward() | |
optimizer.step() | |
progress_bar.set_postfix_str( | |
f'Loss at {batch_idx}: {loss.item():.4f}' | |
) | |
epoch_losses.append(loss.item()) | |
# pyrefly: ignore # no-matching-overload | |
epoch_mean_loss = np.mean(np.array(epoch_losses)) | |
logger.info(f'Loss at epoch {i}: {epoch_mean_loss}') | |
logger.log_dict({'loss': epoch_mean_loss}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment