Skip to content

Instantly share code, notes, and snippets.

@michaelmalak
Last active August 29, 2015 14:00
Show Gist options
  • Save michaelmalak/5361915531a0cdad6142 to your computer and use it in GitHub Desktop.
Save michaelmalak/5361915531a0cdad6142 to your computer and use it in GitHub Desktop.
Automated download of barometer data into IPython Notebook
{
"metadata": {
"name": "",
"signature": "sha256:d53411c6867a1ab9eaf600b142942f9a026b9c7218cb905e56750bad84f915ad"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p>For Windows, install the following and add C:\\Program Files (x86)\\GnuWin32\\bin to your PATH</p>\n",
"http://gnuwin32.sourceforge.net/packages/wget.htm<br />\n",
"http://gnuwin32.sourceforge.net/packages/unzip.htm<br />\n",
"http://gnuwin32.sourceforge.net/packages/coreutils.htm<br />"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import os\n",
"import datetime\n",
"import numpy\n",
"import pandas\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 24
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def tofloat(x):\n",
" try:\n",
" return float(x)\n",
" except ValueError:\n",
" return None"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cities were hand-selected, with WBAN manually looked up from http://cdo.ncdc.noaa.gov/qclcd/QCLCD?prior=N "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"dfcities = pandas.DataFrame([{'City':'Centennial', 'WBAN':93067},\n",
" {'City':'San Diego', 'WBAN':3131}])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 26
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"os.mkdir(\"TempBarometerFiles\")\n",
"os.chdir(\"TempBarometerFiles\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 27
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"processingyear = datetime.date.today().year\n",
"processingmonth = datetime.date.today().month\n",
"dfdiff=pandas.DataFrame(numpy.zeros(0,dtype=[('WBAN', 'i4'),('Range', 'f8')]))\n",
"for x in range(0, 12):\n",
" dt = datetime.datetime(processingyear, processingmonth, 1) - datetime.timedelta(days=1)\n",
" processingyear = dt.year\n",
" processingmonth = dt.month\n",
" os.system(\"wget -q http://cdo.ncdc.noaa.gov/qclcd_ascii/QCLCD\" + str(processingyear) + str(processingmonth).zfill(2) + \".zip\")\n",
" os.system(\"unzip QCLCD\" + str(processingyear) + str(processingmonth).zfill(2) + \".zip\")\n",
" df=pandas.read_csv(str(processingyear) + str(processingmonth).zfill(2) + \"hourly.txt\",low_memory=False)\n",
" dfsp = df.merge(dfcities, on=\"WBAN\").ix[:,(\"WBAN\", \"Date\", \"StationPressure\")]\n",
" dfsp[\"StationPressureFloat\"] = dfsp[\"StationPressure\"].apply(lambda x: tofloat(x))\n",
" del dfsp[\"StationPressure\"]\n",
" dfsp = dfsp.ix[dfsp[\"StationPressureFloat\"].apply(lambda x: not math.isnan(x))]\n",
" gb = dfsp.groupby([\"WBAN\",\"Date\"])\n",
" dfminmax = gb.min().join(gb.max(), lsuffix=\"Min\", rsuffix=\"Max\")\n",
" dfdiffcur = pandas.DataFrame(dfminmax[\"StationPressureFloatMax\"] - dfminmax[\"StationPressureFloatMin\"], columns=[\"Range\"])\n",
" dfdiffcur.reset_index(level=0, inplace=True)\n",
" dfdiff = dfdiff.append(dfdiffcur)\n",
" os.system(\"rm *.txt\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 28
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hist = numpy.histogram(dfdiff.ix[dfdiff[\"WBAN\"]==93067,\"Range\"],range=(0,0.6))\n",
"pandas.DataFrame({'delta inches':hist[1][1:],'Denver (Days)':hist[0]}).plot(x='delta inches',kind='bar', ylim=(0,300))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 48,
"text": [
"<matplotlib.axes.AxesSubplot at 0xedcde10>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEaCAYAAAAMg9w+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1cVHW+B/DPgJSpIA8pmWONioEgT1LA7mrhVVRcJcoW\nw1LIzNbMzd3bTXN70F6b4KsHSzfvtbu68LJ8umWK1nK9qVOWqxg+rlCaC/EopoCApIjzu3/MchJh\neHLm/M6c+bxfL14v5syZ8/0wc/gyfOfMHIMQQoCIiJyWm+wARER0c9jIiYicHBs5EZGTYyMnInJy\nbORERE6OjZyIyMm128gvX76MmJgYREREIDg4GC+++CIAoKqqCvHx8bjnnnswfvx41NTUKLdJT0/H\nsGHDEBQUhF27djk2PRERwdDRceQNDQ3o1asXmpqaMGrUKLz55pvIzs7G7bffjhdeeAHLly9HdXU1\nMjIykJ+fj+nTp+PQoUMoKyvDuHHjcOrUKbi58Yk/EZGjdNhhe/XqBQBobGzEtWvX4OPjg+zsbKSm\npgIAUlNTsW3bNgDA9u3bkZKSAg8PD5hMJgQEBCA3N9eB8YmIqMNGbrFYEBERAX9/f4wZMwYhISGo\nrKyEv78/AMDf3x+VlZUAgPLychiNRuW2RqMRZWVlDopOREQA0KOjFdzc3HD06FFcvHgREyZMwN69\ne1tcbzAYYDAYbN6+resCAgJw5syZbsQlInJd4eHhOHr0aKvlnR5e9+3bF7/+9a+Rl5cHf39/nD17\nFgBQUVGB/v37AwAGDhyIkpIS5TalpaUYOHBgq22dOXMGQgi7fb366qt23R4zOGd9ZtBGfWZwXP1j\nx4612Z/bbeTnz59Xjkj56aef8H//93+IjIxEYmIisrKyAABZWVlISkoCACQmJmLTpk1obGxEYWEh\nTp8+jejo6M7+rSAiom5od7RSUVGB1NRUWCwWWCwWzJgxA2PHjkVkZCSSk5Oxdu1amEwmbNmyBQAQ\nHByM5ORkBAcHo0ePHli9enW7Yxd7KSoqcngNZtB+fWbQRn1mUL9+u408NDQUhw8fbrXc19cXn3/+\neZu3Wbx4MRYvXmyfdJ0UERGhaj1m0GZ9ZtBGfWZQv36Hx5E7pKjBAAlliYicmq3e2eFRK0SkHl9f\nX1RXV8uOQZL5+Pigqqqq0+vr4i2XZrNZdgRm0EB9PWSorq6WfrQHv+R/dfWPuS4aORGRK+OMnEhD\n+LtBgO39wNZyPiMnInJyumjkzj4X1UsG2fWZgVyVLho5EVFnXLlyRfngP5l27NiBRx991G7b44yc\nSEPa+t3w8vJFXZ3jDkn09PRBbW3nDnUzmUw4d+4cevToAXd3dwQHB2PmzJmYM2eOKu/ivlmrVq1C\nQUEBVq9eDQBIS0vDxo0bceuttwIA7r77bkyZMgWLFi2Cl5eXQ7OEhoZiw4YNCA0NbXUdZ+REOmNt\n4sJhX135I2EwGLBz507U1taiuLgYixYtwvLly/Hkk0/a40e1m6ampjaXr1mzBjNmzFAuGwwGLFy4\nELW1tTh//jz++te/4sCBA/jVr36FhoYGh2ZMSUnB+++/b5dt6aKRa2EmyQzy6zODujw9PTFlyhRs\n3rwZWVlZOHnyJADr+OL555/H3XffjTvuuANz587F5cuXAVjvG6PRiLfffhv+/v648847kZmZCQA4\nePAgBgwY0OIZ5yeffILw8HAA1nMjZGRkICAgALfffjumTZumHG9dVFQENzc3rFu3DnfffTfGjRvX\nKm9xcTH++c9/IiYmpsXy5nq33HIL7r33XmRnZ+PChQv461//CsD6aa3/9m//httvvx39+vXD448/\njosXLwIA3njjDTzyyCMttve73/0OCxYsAABkZmZi6NCh8PLywpAhQ7BhwwZlvbi4OHz66afduOdb\n00UjJyJ57rvvPhiNRnz11VcAgEWLFuH777/HsWPH8P3336OsrAyvvfaasn5lZSVqa2tRXl6OtWvX\nYt68ebh48SJiYmLQu3dv7N69W1l3w4YNeOyxxwBYxyLZ2dn48ssvUVFRAR8fH8ybN69Fli+//BLf\nfvst/vd//7dVzhMnTmDIkCEdnnqyT58+iI+Px759+5Rlf/zjH1FRUYGCggKUlJRgyZIlAIAZM2Yg\nJydHaexNTU3YvHkzUlNTcenSJTz33HPIyclBbW0t/v73v7f4/JWgoCAUFRWhvr6+M3dz+4QEksoS\naV5bvxsABCAc+NX530eTySR2797danlsbKxYtmyZsFgsonfv3uLMmTPKdfv37xeDBw8WQgixd+9e\ncdttt4lr164p1/fv318cPHhQCCHESy+9JGbNmiWEEKK2tlb07t1bFBcXCyGEGD58eIva5eXlwsPD\nQ1y7dk0UFhYKg8EgCgsLbWb/4IMPRGxsbItlaWlp4qWXXmq17sKFC0V8fHyb2/nkk09EZGSkcnni\nxIniv//7v4UQQuzYsUMEBwcLIYSor68X3t7e4uOPPxYNDQ2tttPY2CgMBoMoKSlpdZ2tx8TWcj4j\nJ6KbVlpaCl9fX5w/fx4NDQ2IioqCj48PfHx8kJCQgPPnzyvr+vn5tXhW3KtXL+VZaUpKCrZu3YrG\nxkZs3boVUVFRGDRoEADr+OShhx5Sttv8cdnXH4HSvG5bfHx8UFdX16mfp6ysDH5+fgCs/0E8+uij\nMBqN6Nu3L2bMmIELFy4o66ampuKDDz4AAHzwwQeYOXMmAKB3797YvHkz/uu//gt33nknJk+ejO++\n+065XXMWb2/vTmVqjy4auRZmkswgvz4zyHHo0CGUl5dj1KhR8PPzw2233Yb8/HxUV1ejuroaNTU1\nqK2t7dS2goODcffdd+Nvf/sbNmzYgOnTpyvX3XXXXcjJyVG2W11djYaGBgwYMEBZp70jZ8LCwlBY\nWAiLxdJi+Y23qa+vx+eff47Ro0cDsH40t7u7O/7xj3/g4sWLWL9+fYttPPjggzh+/Dj+8Y9/4NNP\nP1VGQQAwfvx47Nq1C2fPnkVQUBCeeuop5bqCggKYTCb06dOnU/dNe3TRyIlIPeJfLw7W1tZi586d\nSElJwYwZMxASEgI3Nzc89dRTWLBgAX788UcA1me3u3bt6vT2p0+fjnfeeQf79u3Db37zG2X5b3/7\nWyxevBjFxcUAgB9//BHZ2dmd3q7RaERAQAAOHjzY4mdp/nmuXLmCvLw8JCUlwc/PD0888QQAa2Pv\n3bs3vLy8UFZWhjfeeKPFdm+77TZMnToV06dPR0xMjHIC+nPnzmH79u24dOkSPDw80Lt3b7i7uyu3\n++KLLzBp0qRO529XmwMXB5NUlkjz2vrd8PT0cdyxh4Dw9PTpdD6TySRuu+024enpKfr27St++ctf\nitWrVwuLxaKsc/nyZbF48WIxZMgQ4eXlJYYPHy5WrVolhLDOyAcNGtRqm9fPvouLi4Wbm5uYPHly\ni/UsFot4++23RWBgoPD09BRDhw4Vf/zjH4UQQhQWFgo3N7cWs/e2vPfee2Lu3LnK5bS0NHHLLbcI\nT09P0adPHxESEiIWLVokLl68qKxz8uRJERUVJfr06SMiIyPFW2+91epn2LdvnzAYDCIzM1NZVlFR\nIR544AHRt29f4e3tLcaMGSMKCgqU60NDQ8Xx48fbzGmrR9pazjcEEWkIfzccq7GxEZGRkdizZw/8\n/f3ttt2SkhIEBQWhsrKyU6OSHTt24MMPP8SmTZvavN4l3xCkhZkkM8ivzwzUkVtuuQUnT560axO3\nWCx46623kJKS0ul595QpU2w28e7gGYKIiLrp0qVL8Pf3x+DBg5GTkyMtB0crRBrC3w0CXHS0QkTk\nynTRyLUwk2QG+fWZgVyVLho5EZEr44ycSEN8fX27fAZ10h8fHx9UVbX+jHibs3M2ciIi56DrFzu1\nMJNkBvn1mUEb9ZlB/fq6aORERK6s3dFKSUkJZs6ciXPnzsFgMGDOnDn43e9+hyVLluAvf/kL+vXr\nBwBYtmwZEhISAADp6elYt24d3N3dsXLlSowfP751UY5WiIi6rFsz8rNnz+Ls2bOIiIhAfX09oqKi\nsG3bNmzZsgWenp74wx/+0GL9/Px8TJ8+HYcOHUJZWRnGjRuHU6dOtTojBxs5EVHXdWtGfscddyin\nJurTpw+GDx+OsrIyAGhzY9u3b0dKSgo8PDxgMpkQEBCA3Nxce+Rvl+xZGDNooz4zaKM+M6hfv9Mz\n8qKiIhw5cgSxsbEArOfPCw8Px5NPPomamhoAQHl5ufJZvID183+bGz8RETlGpw4/rK+vR1xcHF56\n6SUkJSXh3Llzynz85ZdfRkVFBdauXYv58+cjNjZWOUPG7NmzMWnSJDz88MMti3K0QkTUZbZ6Z4ef\nfnj16lVMnToVjz/+OJKSkgAA/fv3V66fPXs2pkyZAgAYOHAgSkpKlOtKS0sxcODANreblpYGk8kE\nwHrOuoiICMTFxQH4+V8SXuZlXuZlV75sNpuRmZkJAEq/bFObp5v4F4vFImbMmCEWLFjQYnl5ebny\n/dtvvy1SUlKEENYzaYSHh4srV66If/7zn2LIkCEtzhzS0Vkuumvv3r123R4zOGd9ZtBGfWZwXH1b\nvbPdZ+Rff/01PvjgA4SFhSEyMhKA9VDDjRs34ujRozAYDBg8eDDWrFkDwHri1OTkZOXs1qtXr273\nZKhERHTz+BZ9IiInoeu36BMRuTJdNPLmFweYQW4G2fWZQRv1mUH9+rpo5ERErowzciIiJ8EZORGR\nTumikcuehTGDNuozgzbqM4P69XXRyImIXBln5EREToIzciIindJFI5c9C2MGbdRnBm3UZwb16+ui\nkRMRuTLOyImInARn5EREOqWLRi57FsYM2qjPDNqozwzq19dFIycicmWckRMROQnOyImIdEoXjVz2\nLIwZtFGfGbRRnxnUr6+LRk5E5Mo4IycichKckRMR6ZQuGrnsWRgzaKM+M2ijPjOoX18XjZyIyJVx\nRk5E5CQ4Iyci0ildNHLZszBm0EZ9ZtBGfWZQv74uGjkRkSvjjJyIyElwRk5EpFPtNvKSkhKMGTMG\nISEhGDFiBFauXAkAqKqqQnx8PO655x6MHz8eNTU1ym3S09MxbNgwBAUFYdeuXY5N/y+yZ2HMoI36\nzKCN+sygfv12G7mHhwdWrFiBkydP4sCBA3jvvfdQUFCAjIwMxMfH49SpUxg7diwyMjIAAPn5+di8\neTPy8/ORk5ODZ555BhaLRZUfhIjIVXVpRp6UlIRnn30Wzz77LL744gv4+/vj7NmziIuLw7fffov0\n9HS4ublh4cKFAICJEydiyZIliI2NbVmUM3Iioi676Rl5UVERjhw5gpiYGFRWVsLf3x8A4O/vj8rK\nSgBAeXk5jEajchuj0YiysrKbzU5ERO3o0ZmV6uvrMXXqVLz77rvw9PRscZ3BYIDBYLB5W1vXpaWl\nwWQyAQC8vb0RERGBuLg4AD/Pljp7+Z133rmp29vj8tGjR7FgwQJp9ZvFxcW5bP3ra8uqD8jfH2XX\n5++D/eqbzWZkZmYCgNIv2yQ60NjYKMaPHy9WrFihLAsMDBQVFRVCCCHKy8tFYGCgEEKI9PR0kZ6e\nrqw3YcIEceDAgVbb7ETZLtm7d69dt8cMzlmfGbRRnxkcV99W72x3Ri6EQGpqKvz8/LBixQpl+Qsv\nvAA/Pz8sXLgQGRkZqKmpQUZGBvLz8zF9+nTk5uairKwM48aNw/fff9/qWTln5EREXWerd7bbyL/6\n6ivcf//9CAsLU5pxeno6oqOjkZycjOLiYphMJmzZsgXe3t4AgGXLlmHdunXo0aMH3n33XUyYMKHT\nYYiIyDabvdPuz/07wd5lZf8LxQzaqM8M2qjPDI6rb6t38p2dREROjp+1QkTkJPhZK0REOqWLRn79\ncZvM4Lr1mUEb9ZlB/fq6aORERK6MM3IiIifBGTkRkU7popHLnoUxgzbqM4M26jOD+vV10ciJiFwZ\nZ+RERE6CM3IiIp3SRSOXPQtjBm3UZwZt1GcG9evropETEbkyzsiJiJwEZ+RERDqli0YuexbGDNqo\nzwzaqM8M6tfXRSMnInJlnJETETkJzsiJiHRKF41c9iyMGbRRnxm0UZ8Z1K+vi0ZOROTKOCMnInIS\nnJETEemULhq57FkYM2ijPjNooz4zqF9fF42ciMiVcUZOROQkOCMnItIpXTRy2bMwZtBGfWbQRn1m\nUL9+h4181qxZ8Pf3R2hoqLJsyZIlMBqNiIyMRGRkJP72t78p16Wnp2PYsGEICgrCrl27HJOaiIgU\nHc7I9+3bhz59+mDmzJk4ceIEAGDp0qXw9PTEH/7whxbr5ufnY/r06Th06BDKysowbtw4nDp1Cm5u\nLf9ecEZORNR13Z6Rjx49Gj4+Pq2Wt7Wx7du3IyUlBR4eHjCZTAgICEBubm43IxMRUWd0e0a+atUq\nhIeH48knn0RNTQ0AoLy8HEajUVnHaDSirKzs5lN2QPYsjBm0UZ8ZtFGfGdSv36M7N5o7dy5eeeUV\nAMDLL7+Mf//3f8fatWvbXNdgMLS5PC0tDSaTCQDg7e2NiIgIxMXFAfj5Dujs5aNHj3ZpfUdcPnr0\nqNT613PV+lq5LHt/lF2fvw/2q282m5GZmQkASr9sS6eOIy8qKsKUKVOUGbmt6zIyMgAAixYtAgBM\nnDgRS5cuRUxMTMuinJETEXWZXY8jr6ioUL7/5JNPlCNaEhMTsWnTJjQ2NqKwsBCnT59GdHR0NyMT\nEVFndNjIU1JS8Mtf/hLfffcdBg0ahHXr1mHhwoUICwtDeHg4vvjiC6xYsQIAEBwcjOTkZAQHByMh\nIQGrV6+2OVqxpxv/lZGBGeTXZwZt1GcG9et3OCPfuHFjq2WzZs2yuf7ixYuxePHim0tFRESdxs9a\nISJyEvysFSIindJFI5c9C2MGbdRnBm3UZwb16+uikRMRuTLOyImInARn5EREOqWLRi57FsYM2qjP\nDNqozwzq19dFIycicmWckRMROQnOyImIdEoXjVz2LIwZtFGfGbRRnxnUr9+tzyN3BV5evqirq3bY\n9j09fVBbW+Ww7ROR6+CM3AbrpzY6MqP27wMi0hbOyImIdEoXjVz2LMzKLDuA9PtBdn1m0EZ9ZlC/\nvi4aORGRK+OM3AbOyIlIazgjJyLSKV00ctmzMCuz7ADS7wfZ9ZlBG/WZQf36umjkRESujDNyGzgj\nJyKt4YyciEindNHIZc/CrMyyA0i/H2TXZwZt1GcG9evropETEbkyzsht4IyciLSGM3IiIp3SRSOX\nPQuzMssOIP1+kF2fGbRRnxnUr6+LRk5E5Mo6nJHPmjULn376Kfr3748TJ04AAKqqqjBt2jT88MMP\nMJlM2LJlC7y9vQEA6enpWLduHdzd3bFy5UqMHz++dVHOyMEZORF1Vbdn5E888QRycnJaLMvIyEB8\nfDxOnTqFsWPHIiMjAwCQn5+PzZs3Iz8/Hzk5OXjmmWdgsVjs9CMQEVFbOmzko0ePho+PT4tl2dnZ\nSE1NBQCkpqZi27ZtAIDt27cjJSUFHh4eMJlMCAgIQG5urgNityR7FmZllh1A+v0guz4zaKM+M6hf\nv1sz8srKSvj7+wMA/P39UVlZCQAoLy+H0WhU1jMajSgrK7NDTCIisuWmT75sMBj+NU+2fX1b0tLS\nYDKZAADe3t6IiIhAXFwcgJ//knX2cvOy7t7e1uWfNV+O6+By99a3V15ejkNcXJz0PM3LXLX+jb8/\nsh8PZ75sNpuRmZkJAEq/bEun3hBUVFSEKVOmKC92BgUFwWw244477kBFRQXGjBmDb7/9VpmVL1q0\nCAAwceJELF26FDExMS2L8sVO8MVOIuoqu74hKDExEVlZWQCArKwsJCUlKcs3bdqExsZGFBYW4vTp\n04iOjr6J2J1z4zMAOcyyA0i/H2TXZwZt1GcG9et3OFpJSUnBF198gfPnz2PQoEF47bXXsGjRIiQn\nJ2Pt2rXK4YcAEBwcjOTkZAQHB6NHjx5YvXp1u2MXIiK6efysFRs4WiEireFnrRAR6ZQuGrnsWZiV\nWXYA6feD7PrMoI36zKB+fV00ciIiV8YZuQ2yZ+ReXr6oq6t2YH3A09MHtbVVDq1BRPZjq3eykdsg\nu5E7vn7HGYhIW3T9YqfsWZiVWXYAyM6ghceBGeTXZwb16+uikRMRuTKOVmzgaIWItEbXoxUiIlem\ni0YuexZmZZYdALIzaOFxYAb59ZlB/fq6aORERK6MM3IbOCMnIq3hjJyISKd00chlz8KszLIDQHYG\nLTwOzCC/PjOoX18XjZyIyJVxRm4DZ+REpDWckRMR6ZQuGrnsWZiVWXYAyM6ghceBGeTXZwb16+ui\nkRMRuTLOyG3gjJyItIYzciIindJFI5c9C7Myyw4Ae2fw8vKFwWBw2JeXl69d8wLa2BdkZ5BdnxnU\nr6+LRk6OYT3VnOjC194ure/oU9kRuQrOyG3gjFz+fUBELXFGTkSkU7po5LJnYVZm2QEgP4Ps+trY\nF2RnkF2fGdSvr4tGTkTkyjgjt0H2fJgzciK6ka3e2eNmNmoymeDl5QV3d3d4eHggNzcXVVVVmDZt\nGn744QeYTCZs2bIF3t7eN1OGiIjacVOjFYPBALPZjCNHjiA3NxcAkJGRgfj4eJw6dQpjx45FRkaG\nXYK2R/YszMosOwDkZ5BdXxv7guwMsuszg/r1b3pGfuPT/OzsbKSmpgIAUlNTsW3btpstQURE7bip\nGfmQIUPQt29fuLu74+mnn8ZTTz0FHx8fVFdb3+ghhICvr69yWSnKGTnkz6e1kEH7+wGRljhkRv71\n119jwIAB+PHHHxEfH4+goKBWRa3NoLW0tDSYTCYAgLe3NyIiIhAXFwfg539JZF/+WfPlODtfBuu3\nU5+XednVL5vNZmRmZgKA0i/bJOxkyZIl4s033xSBgYGioqJCCCFEeXm5CAwMbLWuHcsKIYTYu3ev\nXbcnhPjX+8hFF772dnH99u+DrtfXQgb71u8OR+wLzpZBdn1mcFx9W78z3Z6RNzQ0oK6uDgBw6dIl\n7Nq1C6GhoUhMTERWVhYAICsrC0lJSd0tQUREndDtGXlhYSEeeughAEBTUxMee+wxvPjii6iqqkJy\ncjKKi4ttHn7IGTkgfz6thQza3w+ItMRW7+QbgmyQ3cTYyInoRrr+0KzWL87JYJYdAPIzyK6vjX1B\ndgbZ9ZlB/fq6aORERK6MoxUbZI8VOFohohvperRCROTKdNHIZc/CrMyyA0B+Btn1tbEvyM4guz4z\nqF9fF42ciMiVcUZug+z5MGfkRHQjzsjJKXl5+Sqf2eOILy8vX9k/ItFN00Ujlz0LszLLDgD5Gexf\nv66uGtb/Cjr7tbdL61u3b1+y90fZ9ZlB/fq6aORERK6MM3IbZM+HOSPXTgYireCMnIhIp3TRyGXP\nwqzMsgNAfgbZ9QEtZJC9P8quzwzq19dFIycicmWckdsgezbLGbl2MhBpBWfkREQ6pYtGLnsWZmWW\nHQDyM8iuD2ghg+z9UXZ9ZlC/vi4aORGRK+OM3AbZs1nOyLWRwcvL1yHv/ryep6cPamurHFqD9IHn\n7Owi2Q2EjVwbGbTwOBA10/WLnbJnYVZm2QEgP4Ps+gAzaOP3gRk4Iycioi7gaMUG/ksv/z7QQgYt\nPA5EzXQ9WiEicmWabOSOPpmAY04oYLbz9rrD7OL1AWaQPxtmBvXra7KRO/pkAo46oQARkQyanJFr\nYS7J2az8+0ALGbTwOBA144ycyEnxvKXUEYc08pycHAQFBWHYsGFYvny5I0rcwKxCjY6YZQeA/Ayy\n6wN6zMDzljpnBqeekV+7dg3PPvsscnJykJ+fj40bN6KgoMDeZW5w1MHb7wxmkF8fYAYt1AeOHmUG\nNevbvZHn5uYiICAAJpMJHh4eePTRR7F9+3Z7l7lBjYO33xnMIL8+wAyOqd/V8c7vf/976eOdmhq5\nj4Oa9e3eyMvKyjBo0CDlstFoRFlZmb3LEJGKuj7eebVL63c03unO6wRLly6V/sdELXZv5NZX+dVW\nJKHmjYpkB4D8DLLrA8yghfqAvTN0/Q+JAJDapfXt/cdEzT8kPbp9SxsGDhyIkpIS5XJJSQmMRmOL\ndcLDwzvR8Lv6ByGri+t35o+OYzPYv74WMti7vhYy8HHQRgYtPA6OU1dX3WH98PDwNpfb/TjypqYm\nBAYGYvfu3bjzzjsRHR2NjRs3Yvjw4fYsQ0RE/2L3Z+Q9evTAn//8Z0yYMAHXrl3Dk08+ySZORORA\nUt7ZSURE9sN3dhIROTk28m4oKCjA7t27UV9f32J5Tk6OKvWvXLmCrKwsfP755wCADz/8EPPmzcN7\n772Hq1evqpJBiy5cuCA7guq4L2rP6dOn8dFHHyE/P1+1mk7VyA8cOICLFy8CABoaGvDKK69g8uTJ\nWLhwobLc0VauXImkpCSsWrUKISEh2LZtm3Ldiy++qEqGJ554Ap999hneffddzJgxAx999BFiY2OR\nm5uL2bNnq5LhRjNnzlS13p49exAQEKD83IGBgYiOjsbQoUNx6NAhVTLI3h+5L9qm5v4YFxeH8+fP\nAwDWr1+PX//618jJycG0adOwcuVKdUIIJzJ8+HBx9epVIYQQs2fPFs8995zYt2+fePXVV8VDDz2k\nSoaQkBBRV1cnhBCisLBQREVFiRUrVgghhIiIiFAlw4gRI4QQQly9elX069dPuU8sFotynSNNnjxZ\nTJkyRUyePFn56tWrl7JcDSNHjhTHjx8X+/fvF3379hVffvmlEEKIvLw8MWrUKFUyyN4fuS9ayd4f\nQ0JClO+joqLE+fPnhRBCXLp0SbX7wO5HrTiSEAI9elgj5+Xl4fDhwwCAUaNG2Ty+0hEZ+vTpAwAw\nmUwwm82YOnUqfvjhB9U+itRiseDKlStoaGjATz/9hIsXL8LPzw+XL1+GxWJxeP3S0lIEBwdj9uzZ\ncHNzgxAC33zzDZ5//nmH125msVgQGhoKABgwYABGjx4NABg5cmSrMYOjyN4fuS9ayd4fPTw8UFpa\nCqPRCE9PT/Tq1QsAcOutt6p2HzjVaCUkJATr1q0DYD0wvvlf6FOnTuGWW25RJUP//v1bfBhOnz59\nsHPnTlwCHPl4AAAKaUlEQVS4cAHHjx9XJcPjjz+O4cOHIzY2Fm+99RZGjx6N2bNn47777kNqaqrD\n63/zzTeIiorC66+/Di8vL8TFxaFnz5544IEH8MADDzi8PoAWvyDp6enK90II1WazsvdH7otWsvfH\nFStWYMKECXjllVcQEhKCsWPHYsmSJZgwYQKeeOIJh9cHnOzww5qaGjz33HPYt28f+vXrh8OHD8No\nNGLQoEFYtWqVKs+CSkpK4OHhgTvuuKPFciEEvv76a4waNcrhGQCgqKgIXl5e8PX1xZkzZ/DNN98g\nKChItf9MAOszod///vfo378/srOzW7yj19G2b9+OcePGoXfv3i2WnzlzBh9//DFeeOEFh2eQvT9q\ndV/My8tDYGCgqvsiIHd/rKmpwYYNG3D69GlcvXoVgwYNwoMPPoigoCBV6jtVI2928eJFFBYWoqmp\nCUajsdWOLEt9fb3yr64rZdi5cyf279+PZcuWqVpXK7S0P2ZnZyMxMVFafcD6R/bBBx+UVt8V90en\nbOSVlZUoLS2FwWDAwIED4e/vLzsSAOCuu+5CcXGxy2eQbc2aNXj66ael1L5w4QL8/PxUqbV161Zl\nFt58CrBnnnkG//mf/wkAePjhhx2e4eOPP1a+l5WhLWo+Du1Ra190qhc7jxw5grlz56Kmpkb5IK7S\n0lJ4e3tj9erVGDlypMMzvPXWWzavq6urc3h9LWQ4fvw45syZg9LSUkyaNAnLly+Hj48PACA6Ohq5\nubkOz6AFe/bswZw5c3D77bdj5cqVmDFjBpqamgAAmzZtwn333efQ+snJyZg4cSL69esHwDpSaWho\nwI4dOwCo00SnTZsmPcOf/vQnvPTSSwCA/Px8JCUl4erVqxBCYNOmTYiNjXV4Btmc6hl5eHg43n//\nfcTExLRYfuDAATz99NM4duyYwzP07NkTzz//PDw8PFosF0JgxYoVqhw/LDvDr371K7z88suIiYnB\n2rVrsW7dOmRnZyMgIACRkZE4cuSIQ+s3KygowPbt25XPuzcajUhMTFTts32ioqKQmZmJ+vp6JCQk\nYMeOHRg9ejQOHz6szM4d6dChQ1i4cCEeeeQRzJ07FwaDAYMHD0ZhYaFD62otw/X73KRJkzB//nwk\nJCQgNzcXCxYswP79+x2eQfa+6FTHkQcEBNi8bujQoapkiI2NFYcOHWrzOqPR6BIZQkNDW1zes2eP\nGDp0qPj73/+u2vHLGRkZIjw8XKSnp4v169eL9evXi2XLlonw8HCxbNkyVTJc/7MGBQXZvM6Rmpqa\nxIoVK0RcXJw4cOCAMJlMqtTVUobr7+uwsLAW14WHhzu8vhb2Radq5PPnzxcJCQli06ZN4uuvvxZf\nffWV2Lhxo0hISBDz5s1TJUNBQYE4d+5cm9dVVFS4RIawsDBRU1PTYtmxY8fE0KFDha+vr8PrC2H9\no97Y2Nhq+ZUrV1T7o3590/jkk0+U7y0WS4s3iaihtLRUPPLII2Lw4MGq1tVCBi8vL+UNQb6+vuLS\npUtCCPUeBy3si041WgGAzz77DNnZ2cq/MAMHDkRiYiImTZokOZnr+PDDDzFkyBD84he/aLG8uLgY\nr732Gv7yl784PENQUBBycnJgMplaLC8qKsKECRPw3XffOTyDFg6BpJZnqzcYDBg5ciQ8PT1RWVmJ\njz76CPPmzXNofS3si07XyLVM5tESWsqghpycHDz77LMICAhQzhFbUlKC06dP489//jMSEhIkJ5RL\nC/uBFjKoQQv7olMdtdIeV9lptE6tx2HixIn47rvvkJubi7KyMuVQ1HvvvVd527xM3B+1QY3HQQv7\novw93gnZeoVazV9cLWSQzd3dvdV4x9VoYT/QQgbZZO+LTjdakX2Yz/Lly7Fx40Y8+uijyrHsJSUl\n2Lx5M6ZNm6bKx4dqIYPsx0ErZN4PWtgPtJAB4P7oVI1cCzvNsGHDkJ+f3+oY7sbGRgQHB+P777/X\nfQYtPA5aIPt+kL0faCWD7MdBE1Q5NsZOtHCYT2BgoCgsLGy1vLCwUNxzzz0ukUELj4MWyL4fZO8H\nWskg+3HQAqeakbu7u6OsrKzVYT7l5eVwd3dXJcM777yDcePG2XyF2hUyaOFx0ALZ94Ps/UArGWQ/\nDlrgVKMVLRzmAwDXrl2TfrSEzAxaeRxk08L94Or7IqCNx0E2p2rkgPydhqz4OFjxftAGV38cnK6R\nExFRS051qjciImqNjZyIyMmxkRMROTk2cnIKS5YsaffMSDeuk5mZiYqKii7VWLNmDdavX9+tfCaT\nCVVVVd26LdHNco2XdMnpGQyGTq3TvF5mZiZCQ0MxYMCATte4mc8GaT5fJZEMfEZOmvX6668jMDAQ\no0ePbvGZzmfOnEFCQgLuvfde3H///S2uE0Lg448/Rl5eHh577DGMHDkSly9fxmuvvYbo6GiEhoba\nbNjXP6OPi4vDokWLEBMTg8DAQHz11VcArIe5Pf/88wgNDUV4eDjee+895farVq1CVFQUwsLClEyX\nLl3CrFmzEBMTg5EjRyI7OxsAcPLkScTExCAyMhLh4eGqvJWd9IuNnDQpLy8PmzdvxrFjx/DZZ5/h\n0KFDyrPtOXPmYNWqVfjmm2/wxhtv4JlnnlFuZzAYMHXqVNx7773YsGEDDh8+jJ49e2L+/PnIzc3F\niRMn8NNPP2Hnzp2tal7/jN5gMODatWs4ePAg3nnnHSxduhQA8P7776O4uBjHjh3DsWPHMH36dOX2\n/fr1Q15eHubOnYs333wTgPWP0dixY3Hw4EHs2bMH//Ef/4GGhgasWbMGzz33HI4cOYK8vDzlM0KI\nuoOjFdKkffv24eGHH0bPnj3Rs2dPJCYmArA+w92/fz9+85vfKOs2Nja2uY3rRx179uzBG2+8gYaG\nBlRVVSEkJASTJ09uN0PzGeBHjhyJoqIiAMDu3bsxd+5cuLlZnwP5+Pi0uf7WrVsBALt27cKOHTuU\nxn7lyhUUFxfjF7/4BV5//XWUlpbi4YcfRkBAQKfvG6IbsZGTJt04c27+3mKxwMfHRzlrekfbAIDL\nly9j3rx5yMvLw8CBA7F06VJcvny5w9vfeuutAKyf5dHU1NQqS2fX37p1K4YNG9Zi3aCgIMTGxmLn\nzp2YNGkS1qxZgzFjxnSYiagtHK2QJt1///3Ytm0bLl++jLq6OmUU4unpicGDB+Ojjz4CYG2qx48f\nV27X3GQ9PT1RW1sLAErT9vPzQ319Pf7nf/7H5ounHb1gGR8fjzVr1uDatWsAgOrq6nbXnzBhAlau\nXKlcbv4DVFhYiMGDB2P+/Pl48MEHceLEiXa3Q9QeNnLSpMjISEybNg3h4eGYNGkSoqOjles+/PBD\nrF27FhERERgxYoTyAiLw87PwtLQ0/Pa3v8XIkSPRs2dPPPXUUxgxYgQmTpyImJgYm3VtNfjm5bNn\nz8Zdd92FsLAwREREYOPGjW2u27z+yy+/jKtXryIsLAwjRozAq6++CgDYsmULRowYgcjISJw8eRIz\nZ87s4j1E9DN+1goRkZPjM3IiIifHRk5E5OTYyImInBwbORGRk2MjJyJycmzkREROjo2ciMjJ/T+Q\nW55jlPfbzQAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0xf257f98>"
]
}
],
"prompt_number": 48
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hist = numpy.histogram(dfdiff.ix[dfdiff[\"WBAN\"]==3131,\"Range\"],range=(0,0.6))\n",
"pandas.DataFrame({'delta inches':hist[1][1:],'San Diego (Days)':hist[0]}).plot(x='delta inches',kind='bar', ylim=(0,300))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 50,
"text": [
"<matplotlib.axes.AxesSubplot at 0xee77a20>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEaCAYAAAAMg9w+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVPW6B/DvcNlagnJR0Rjco2IgyE0KrLQwRcRtZNrB\nSyqUbsvSY7U73s42sXMSfKptarofPYl43Iaa5SVTtrt0ynIbhtfEwu3B5CaWgICm3H7nj8mVCCOg\nM/Nbs+b7eZ55HtaaNfN+XbN8GV4Wa3RCCAEiIrJbTrIDEBHR3WEjJyKyc2zkRER2jo2ciMjOsZET\nEdk5NnIiIjt320Z+7do1REdHIzw8HEFBQZg3bx4AoKysDLGxsbj//vsxbNgwVFRUKI9JTU1Fnz59\nEBgYiL1791o3PRERQdfSeeRXr17Fvffei7q6OgwcOBBvv/02du7cic6dO2P27NlYsmQJysvLkZaW\nhtzcXEyYMAGHDx9GUVERhg4diry8PDg58Y0/EZG1tNhh7733XgBATU0N6uvr4enpiZ07dyIpKQkA\nkJSUhO3btwMAduzYgfHjx8PV1RUGgwH+/v7Izs62YnwiImqxkTc0NCA8PBw+Pj4YPHgwgoODUVpa\nCh8fHwCAj48PSktLAQDFxcXQ6/XKY/V6PYqKiqwUnYiIAMClpQ2cnJxw7NgxXL58GXFxcdi/f3+j\n+3U6HXQ6ndnHN3efv78/zp49ewdxiYgcV1hYGI4dO9ZkfauH1506dcIf/vAH5OTkwMfHBxcuXAAA\nlJSUoGvXrgAAX19fFBQUKI8pLCyEr69vk+c6e/YshBAWuy1cuNCiz8cM9lmfGdRRnxmsV//48ePN\n9ufbNvKff/5ZOSPll19+wT/+8Q9EREQgISEB69evBwCsX78eo0aNAgAkJCRg06ZNqKmpQX5+Ps6c\nOYOoqKjWfq8gIqI7cNvRSklJCZKSktDQ0ICGhgZMmjQJQ4YMQUREBBITE7F27VoYDAZs2bIFABAU\nFITExEQEBQXBxcUFq1atuu3YxVLOnTtn9RrMoP76zKCO+sxg+/q3beQhISE4cuRIk/VeXl747LPP\nmn3M/PnzMX/+fMuka6Xw8HCb1mMGddZnBnXUZwbb12/xPHKrFNXpIKEsEZFdM9c7WzxrhYhax8vL\nC+Xl5bJjkAZ4enqirKys1dtr4k8ujUaj7AjMoIL6sjOUl5dLP1ODN23c2vqGQBONnIjIkXFGTmQh\nPK7JUswdS+bW8x05EZGd00Qjd/TZrFoyyK6vlgxEtqaJRk5E9uP8+fNwd3eXMob6+9//jqeeesrm\ndW/19NNPIysry3JPKCSQVJbIqm49rt3dPQUAq93c3T1bne3AgQPioYceEp06dRJeXl7ikUceEYcP\nH7b0LhDr1q0TTk5Ows3NTbi5uYmePXuKZ599VuTl5Vm81p2IjIwU33zzjbKs0+lEhw4dhJubm/D2\n9hZDhgwRmzdvtnqO7OxsERkZafZ+cz3S3Hq+Iyeykqqqclixj//6/C2rrKzEyJEjMWvWLJSXl6Oo\nqAgLFy5Eu3btLPVPbeSRRx5BVVUVKisr8dlnn+Gee+5BZGQkTp06ZZV6rXX48GFUVlY2uf7TiRMn\nUFVVhby8PCQnJ2PGjBl44403rJrlwQcfRGVlJXJycizyfJpo5GqYizKD/PpqyaA2eXl50Ol0GDt2\nLHQ6Hdq3b4/Y2FiEhIQAMF2N9PHHH0fnzp3RpUsXTJw4EZcvX1YebzAY8M477yAsLAweHh4YN24c\nrl+/brae+HVkotPp0KtXL6xcuRKPPfYYUlJSAJiuQeLk5ISGhgYAwOXLlzFlyhTcd9990Ov1WLBg\ngXJfQ0MD/vSnP6FLly7o1asX3nvvvUaPLS4uRkJCAry9vdGnTx+8//77ZnPt2bMHMTExZu/38vLC\nxIkT8de//hWpqanKudzr1q1DUFAQOnbsiN69e2PNmjXKY/r164ddu3Ypy7W1tejcuTOOHz+Oa9eu\nYeLEiejcuTM8PT0RFRWFixcvKtvGxMTg008/NZunLTTRyInIvICAADg7OyM5ORlZWVnN/rHJf/7n\nf6KkpASnT59GQUGB0nQBU0P+8MMP8fe//x35+fk4ceIEMjIy2pRh9OjROHDgQLP3JScn43e/+x3O\nnj2Lo0ePYu/evUpDXrNmDbKysnD8+HEcOXIE27dvb3QhvnHjxqFHjx4oKSnB1q1bMX/+/CafmXDD\nd999h4CAgBazJiQkoK6uTvl0Mx8fH3z66aeorKzEunXr8Morr+Do0aMATJ+Q9re//U157O7du+Hr\n64uwsDCsX78elZWVKCwsRFlZGVavXo177rlH2bZv375mL0vbZpaY97SVpLJEVnXrcQ1AAMKKt9b/\nPzp9+rRITk4Wer1euLi4iISEBFFaWtrsttu2bRMRERHKssFgEBs3blSWZ8+eLV544YVmH7tu3Tox\ncODAJuv37NkjXF1dhRBC5OfnC51OJ+rr68WFCxdEu3btxC+//KJs+8EHH4jBgwcLIYQYPHiwWLNm\njXLfZ599pjz2/PnzwtnZWVRXVyv3z5s3TyQnJzebLTY2VqxevbrROp1OJ86ePdtk227duokPPvig\n2ecZNWqUWLZsmRBCiKKiIuHm5iaqqqqEEEKMGTNGvPXWW0IIIdLT08XDDz8sTpw40ezzrFmzRjz+\n+OPN3mfutTW3nu/IiRxAYGAg1q1bh4KCAnz33XcoLi7Gyy+/DAAoLS3FuHHjoNfr0alTJ0yaNAmX\nLl1q9Phu3bopX99zzz2orq5uU/2ioiJ4eXk1Wf/jjz+itrYW3bt3h6enJzw9PfHCCy/gp59+AmC6\nlLafn5+y/c0fJVlcXAwvLy906NBBWdejRw+zHy/p6emJysrKFrPW1tbip59+UvLu2bMHAwYMgLe3\nNzw9PbF7925l/9x333145JFHsHXrVlRUVCArKwvPPPMMAGDSpEmIi4vDuHHj4Ovrizlz5qCurk6p\nU1VVBQ8PjxbztIYmGrka5qLMIL++WjKoXUBAAJKSkvDdd98BMF162tnZGd999x0uX76MDRs2KDPo\n5tzJZwxs27YNjz76aJP1fn5+aNeuHS5duoTy8nKUl5fj8uXLOHnyJACge/fujT517Oav77vvPpSV\nlTX6pnL+/PlGzf5moaGhyMvLazHrjh074OLigqioKFy/fh1jxozB7NmzcfHiRZSXl2PEiBGNTp28\nMV758MMP8fDDD6N79+4AABcXF7z++us4deoUDh48iF27duF///d/lcedPn3aYpe61UQjJyLzfvjh\nB/zlL39R3qkWFBQgMzMTDz30EACguroaHTp0QMeOHVFUVIS33nrrts93cxO7nfr6euTn52PmzJn4\n8ssvsXDhwibbdO/eHcOGDcOrr76KqqoqNDQ04OzZs/jyyy8BAImJiVi2bBmKi4tRUVGBJUuWKN9I\n/Pz88PDDD2PevHm4fv06Tpw4gfT0dEycOLHZPCNGjMAXX3xh9t9TVlaGjRs3YsaMGZg7dy48PT1R\nU1ODmpoadO7cGU5OTtizZw/27t3b6PFPPfUUjhw5guXLl2Py5MnKeqPRiJMnT6K+vh7u7u5wdXWF\ns7Ozcv+XX36J+Pj4Vu3LFjU7cLEySWWJrOrW41ot55EXFRWJxMRE4evrKzp06CB8fX3FCy+8oMx1\nT506JSIjI4Wbm5uIiIgQ77zzjvDz81MebzAYxOeff64sp6SkiEmTJjVbKyMjQzg7Ows3NzfRoUMH\n8fvf/14kJyeL77//XtkmPz9fODk5ifr6eiGEEJcvXxbTp08Xer1edOrUSURERCjnctfV1YlXXnlF\neHt7i169eomlS5cqs3YhhCgsLBQjR44UXl5eonfv3k1m4Ld68MEHzZ5H7uXlJR5//HGRmZnZ6DEr\nV64UPj4+wsPDQ0yaNEmMHz9eLFiwoNE2U6ZMEW5ubuLKlSvKuszMTBEQECA6dOggfHx8xKxZs5R/\ns6XPI+dFs4gshMe19e3ZswfTp0+/449R+8c//oFVq1Zh27ZtFs31X//1Xzhz5kyj0cntPP3005g6\ndSqGDx/e7P0OedEsNcxFmUF+fbVkIMu5du0adu/ejbq6OhQVFWHRokUYPXr0HT9fbGysxZt4WVkZ\n0tPTMW3atFY/ZuvWrWab+J3QRCMnIm0SQiAlJQVeXl7o378/goODrf5Xl23xP//zP+jRowfi4+Mx\ncOBAaTk4WiGyEB7XZCkOOVohInJkmmjkapiLMoP8+mrJQGRrmmjkRESOjDNyIgvx8vJq86efEzXH\n09MTZWVlTdabnZ2zkRMR2QdN/7JTDXNRZpBfnxnUUZ8ZbF9fE42ciMiR3Xa0UlBQgMmTJ+PixYvQ\n6XSYNm0a/v3f/x0pKSl4//330aVLFwDA4sWLlYu/pKamIj09Hc7Ozli+fDmGDRvWtChHK0REbXZH\nM/ILFy7gwoULCA8PR3V1NSIjI7F9+3Zs2bIF7u7uePXVVxttn5ubiwkTJuDw4cMoKirC0KFDkZeX\nByenxm/82ciJiNrujmbk3bp1U66X6+bmhr59+yqXwmzuyXbs2IHx48fD1dUVBoMB/v7+ysclWZPs\nWRgzqKM+M6ijPjPYvn6rZ+Tnzp3D0aNHMWDAAADAihUrEBYWhilTpqCiogKA6RM7br6ou16vN/tp\nHUREZBmtOv2wuroaMTEx+POf/4xRo0bh4sWLynx8wYIFKCkpwdq1azFz5kwMGDBA+aijqVOnYsSI\nEU2uVsbRChFR25nrnS4tPbC2thZjxozBxIkTMWrUKABA165dlfunTp2KJ554AgDg6+vb6KOYCgsL\n4evr2+zzJicnw2AwAAA8PDwQHh6OmJgYAL/9SMJlLnOZy468bDQakZGRAQBKv2yW2Y+oEEI0NDSI\nSZMmiZdffrnR+uLiYuXrv/zlL2L8+PFCCNMnjYSFhYnr16+L//u//xO9evUSDQ0Nrf6Uizu1f/9+\niz4fM9hnfWZQR31msF59c73ztu/Iv/76a/ztb39DaGgoIiIiAJhONczMzMSxY8eg0+nQs2dPrF69\nGgAQFBSExMREBAUFwcXFBatWrbqjD2olIqLW45/om9Gxoxeqqqx33Qx3d09UVja9lgIRkTm81kob\nmX6SsGZG9e8DIlIXXmvF6oyyA0jfD7LrM4M66jOD7etropETETkyjlbM4GiFiNRG06MVIiJHpolG\nLnsWZmKUHUD6fpBdnxnUUZ8ZbF9fE42ciMiRcUZuBmfkRKQ2nJETEWmUJhq57FmYiVF2AOn7QXZ9\nZlBHfWawfX1NNHIiIkfGGbkZnJETkdpwRk5EpFGaaOSyZ2EmRtkBpO8H2fWZQR31mcH29TXRyImI\nHBln5GZwRk5EasMZORGRRmmikcuehZkYZQeQvh9k12cGddRnBtvX10QjJyJyZJyRm8EZORGpDWfk\nREQapYlGLnsWZmKUHUD6fpBdnxnUUZ8ZbF9fE42ciMiRcUZuBmfkRKQ2nJETEWmUJhq57FmYiVF2\nAOn7QXZ9ZlBHfWawfX1NNHIiIkfGGbkZnJETkdpwRk5EpFG3beQFBQUYPHgwgoOD0a9fPyxfvhwA\nUFZWhtjYWNx///0YNmwYKioqlMekpqaiT58+CAwMxN69e62b/leyZ2EmRtkBpO8H2fWZQR31mcH2\n9W/byF1dXbF06VKcOnUKhw4dwsqVK3H69GmkpaUhNjYWeXl5GDJkCNLS0gAAubm52Lx5M3Jzc5GV\nlYUXX3wRDQ0NNvmHEBE5qjbNyEeNGoUZM2ZgxowZ+OKLL+Dj44MLFy4gJiYG33//PVJTU+Hk5IQ5\nc+YAAIYPH46UlBQMGDCgcVHOyMEZORG11V3PyM+dO4ejR48iOjoapaWl8PHxAQD4+PigtLQUAFBc\nXAy9Xq88Rq/Xo6io6G6zExHRbbi0ZqPq6mqMGTMGy5Ytg7u7e6P7dDrdr+9em2fuvuTkZBgMBgCA\nh4cHwsPDERMTA+C32VJrl9999927ery55d/cWI65zfIxAC+3Yfubnt2CeWNiYiz2fPZW/+basuoD\n1jse7aW+0WjEsWPH8PLLL0urf4O9/38wGo3IyMgAAKVfNku0oKamRgwbNkwsXbpUWRcQECBKSkqE\nEEIUFxeLgIAAIYQQqampIjU1VdkuLi5OHDp0qMlztqJsm+zfv9+izyeEKSMg2nDb38btLbsPhLDO\nfrCn+sygjvrMYL365vrGbWfkQggkJSXB29sbS5cuVdbPnj0b3t7emDNnDtLS0lBRUYG0tDTk5uZi\nwoQJyM7ORlFREYYOHYp//etfTd6Vc0YOcEZORG1lrnfetpF/9dVXePTRRxEaGqo049TUVERFRSEx\nMRHnz5+HwWDAli1b4OHhAQBYvHgx0tPT4eLigmXLliEuLq7VYdSEjZyI1MZs77T4e/9WsHRZjlZM\ntPijJDPYX31msF59c32Df9lJRGTneK0VMzhaISK14bVWiIg0ShON/ObzNuUxyg4gfT/Irs8M6qjP\nDLavr4lGTkTkyDgjN4MzciJSG87IiYg0ShONXPYszMQoO4D0/SC7PjOooz4z2L6+Jho5EZEj44zc\nDM7IiUhtOCMnItIoTTRy2bMwE6PsANL3g+z6zKCO+sxg+/qaaORERI6MM3IzOCMnIrXhjJyISKM0\n0chlz8JMjLIDSN8PsuszgzrqM4Pt62uikRMROTLOyM3gjJyI1IYzciIijdJEI5c9CzMxyg4gfT/I\nrs8M6qjPDLavr4lGTkTkyDgjN4MzciJSG87IiYg0ShONXPYszMQoO4D0/SC7PjOooz4z2L6+Jho5\nEZEj44zcDM7IiUhtOCMnItIoTTRy2bMwE6PsANL3g+z6zKCO+sxg+/otNvLnnnsOPj4+CAkJUdal\npKRAr9cjIiICERER2LNnj3Jfamoq+vTpg8DAQOzdu9c6qYmISNHijPzAgQNwc3PD5MmTcfLkSQDA\nokWL4O7ujldffbXRtrm5uZgwYQIOHz6MoqIiDB06FHl5eXByavz9gjNygDNyImqrO56RDxo0CJ6e\nnk3WN/dkO3bswPjx4+Hq6gqDwQB/f39kZ2ffYWQiImqNO56Rr1ixAmFhYZgyZQoqKioAAMXFxdDr\n9co2er0eRUVFd5+yBbJnYSZG2QGk7wfZ9ZlBHfWZwfb1Xe7kQdOnT8frr78OAFiwYAH+9Kc/Ye3a\ntc1uaxpRNJWcnAyDwQAA8PDwQHh4OGJiYgD8tgNau3zs2LE2bd/a5d/cWI65zfKxFu5vbhlWyWup\n57O3+mpZttbxaC/1jUYjjh07Jv31uMGe6xuNRmRkZACA0i+b06rzyM+dO4cnnnhCmZGbuy8tLQ0A\nMHfuXADA8OHDsWjRIkRHRzcuyhk5OCMnoray6HnkJSUlytfbtm1TzmhJSEjApk2bUFNTg/z8fJw5\ncwZRUVF3GJmIiFqjxUY+fvx4PPzww/jhhx/g5+eH9PR0zJkzB6GhoQgLC8MXX3yBpUuXAgCCgoKQ\nmJiIoKAgxMfHY9WqVWZHK5Z0648ychhlB5C+H2TXZwZ11GcG29dvcUaemZnZZN1zzz1ndvv58+dj\n/vz5d5eKiIhajddaMYMzciJSG15rhYhIozTRyGXPwkyMsgNI3w+y6zODOuozg+3ra6KRExE5Ms7I\nzeCMnIjUhjNyIiKN0kQjlz0LMzHKDiB9P8iuzwzqqM8Mtq+viUZOROTIOCM3gzNyIlIbzsiJiDRK\nE41c9izMxCg7gPT9ILs+M6ijPjPYvr4mGjkRkSPjjNwMzsiJSG04Iyci0ihNNHLZszATo+wA0veD\n7PrMoI76zGD7+ppo5EREjowzcjM4IyciteGMnIhIozTRyGXPwkyMsgNI3w+y6zODOuozg+3ra6KR\nExE5Ms7IzeCMnIjUhjNyIiKN0kQjlz0LMzHKDiB9P8iuzwzqqM8Mtq+viUZOROTIOCM3gzNyIlIb\nzsiJiDRKE41c9izMxCg7gPT9ILs+M6ijPjPYvr4mGjkRkSNrcUb+3HPP4dNPP0XXrl1x8uRJAEBZ\nWRnGjh2LH3/8EQaDAVu2bIGHhwcAIDU1Fenp6XB2dsby5csxbNiwpkU5Iwdn5ETUVnc8I3/22WeR\nlZXVaF1aWhpiY2ORl5eHIUOGIC0tDQCQm5uLzZs3Izc3F1lZWXjxxRfR0NBgoX8CERE1p8VGPmjQ\nIHh6ejZat3PnTiQlJQEAkpKSsH37dgDAjh07MH78eLi6usJgMMDf3x/Z2dlWiN2Y7FmYiVF2AOn7\nQXZ9ZlBHfWawff07mpGXlpbCx8cHAODj44PS0lIAQHFxMfR6vbKdXq9HUVGRBWISEZE5Lnf7BDqd\n7td5svn7m5OcnAyDwQAA8PDwQHh4OGJiYgD89p2stcs31t3p480t/+bGckwLy3e2vaXycjkGMTEx\n0vPcWOeo9W/9/yP79bDnZaPRiIyMDABQ+mVzWvUHQefOncMTTzyh/LIzMDAQRqMR3bp1Q0lJCQYP\nHozvv/9emZXPnTsXADB8+HAsWrQI0dHRjYvyl53gLzuJqK0s+gdBCQkJWL9+PQBg/fr1GDVqlLJ+\n06ZNqKmpQX5+Ps6cOYOoqKi7iN06t74DkMMoO4D0/SC7PjOooz4z2L5+i6OV8ePH44svvsDPP/8M\nPz8/vPHGG5g7dy4SExOxdu1a5fRDAAgKCkJiYiKCgoLg4uKCVatW3XbsQkREd4/XWjGDoxUiUhte\na4WISKM00chlz8JMjLIDSN8PsuszgzrqM4Pt62uikRMROTLOyM3gjJyI1IYzciIijdJEI5c9CzMx\nyg4gfT/Irs8M6qjPDLavr4lGTkTkyDgjN4MzciJSG87IiYg0ShONXPYszMQoO4D0/SC7PjOooz4z\n2L6+Jho5EZEj44zcDM7IiUhtOCMnItIoTTRy2bMwE6PsANL3g+z6zKCO+sxg+/qaaORERI6MM3Iz\nOCMnIrXhjJyISKM00chlz8JMjLIDSN8PsuszgzrqM4Pt62uikRMROTLOyM3gjJyI1IYzciIijdJE\nI5c9CzMxyg4gfT/Irs8M6qjPDLavr4lGTkTkyDgjN4MzciJSG87IiYg0ShONXPYszMQoO4D0/SC7\nPjOooz4z2L6+Jho5EZEjU+WMvGNHL1RVlVs1g7u7Jyory8zeL3tGroZ9QETqYq533lUjNxgM6Nix\nI5ydneHq6ors7GyUlZVh7Nix+PHHH2EwGLBlyxZ4eHi0KszN91u3iQItNVLZjVwN+4CI1MUqv+zU\n6XQwGo04evQosrOzAQBpaWmIjY1FXl4ehgwZgrS0tLsp0UpGG9RoiVF2AMjOIHsmyQzqqM8Mtq9/\n1zPyW7877Ny5E0lJSQCApKQkbN++/W5LEBHRbdzVaKVXr17o1KkTnJ2d8fzzz+OPf/wjPD09UV5u\nmu0KIeDl5aUsK0U5WlFB/ZYzEJG6mOudLnfzpF9//TW6d++On376CbGxsQgMDGxS1NSQmkpOTobB\nYAAAeHh4IDw8HDExMTdtYQQQc9PXsMLyr0u//gh0o37TH4kcsz6XucxluctGoxEZGRkAoPTLZgkL\nSUlJEW+//bYICAgQJSUlQgghiouLRUBAQJNtWyoLQACiDbf9bdxeDRksXd/yGdpq//79Fn0+ZrDP\n+sxgvfrm/s/e8Yz86tWrqKqqAgBcuXIFe/fuRUhICBISErB+/XoAwPr16zFq1Kg7LUFERK1wxzPy\n/Px8PPXUUwCAuro6PPPMM5g3bx7KysqQmJiI8+fP8/RDVddvOQMRqYtVziO3dJib75fdxNjIiUht\nNH7RLKPsAGAG+eftMoM66jOD7etrpJETETkujlakZZBdv+UMRKQuGh+tEBE5Lo00cqPsAGAG+TNJ\nZlBHfWawfX2NNHIiIsfFGbm0DLLrt5yBiNSFM3IiIo3SSCM3yg4AZpA/k2QGddRnBtvX10gjJyJy\nXJyRS8sgu37LGYhIXTgjJyLSKI00cqPsAGAG+TNJZlBHfWawfX2NNHIiIsfFGbm0DLLrt5yBiNSF\nM3IiIo3SSCM3yg4AZpA/k2QGddRnBtvX10gjJyJyXJyRS8sgu37LGYhIXTgjJyLSKI00cqPsAGAG\n+TNJZlBHfWawfX2NNHIiIsfFGbm0DLLrt5yBiNSFM3IiIo3SSCM3yg4AZpA/k2QGddRnBtvX10gj\nJyJyXJyRS8sgu37LGYhIXTgjJyLSKKs08qysLAQGBqJPnz5YsmSJNUrcwmiDGi0xyg4A2RlkzySZ\nQR31mcH29S3eyOvr6zFjxgxkZWUhNzcXmZmZOH36tKXL3OKYlZ+/NbSXoWNHL+h0ulbfBg8e3Kbt\nO3b0smheADh2TP7rIDuD7PrMYPv6Fm/k2dnZ8Pf3h8FggKurK8aNG4cdO3ZYuswtKqz8/K2hvQxV\nVeUwzelbe1vYpu1Nz29ZFRXyXwfZGWTXZwbb17d4Iy8qKoKfn5+yrNfrUVRUZOkyRET0K4s3ctPZ\nFrZ2TkLNW52THQDyM8iuD5w7xwyy6zODhPrCwv75z3+KuLg4ZXnx4sUiLS2t0TZhYWFt+XmdN954\n4403QISFhTXbdy1+HnldXR0CAgLw+eef47777kNUVBQyMzPRt29fS5YhIqJfuVj8CV1c8N577yEu\nLg719fWYMmUKmzgRkRVJ+ctOIiKyHP5lJxGRnWMjvwOnT5/G559/jurq6kbrs7KybFL/+vXrWL9+\nPT777DMAwMaNG/HSSy9h5cqVqK2ttUkGNbp06ZLsCDbHY1F9zpw5g61btyI3N9dmNe2qkR86dAiX\nL18GAFy9ehWvv/46Ro4ciTlz5ijrrW358uUYNWoUVqxYgeDgYGzfvl25b968eTbJ8Oyzz2L37t1Y\ntmwZJk2ahK1bt2LAgAHIzs7G1KlTbZLhVpMnT7ZpvX379sHf31/5dwcEBCAqKgq9e/fG4cOHbZJB\n9vHIY9E8Wx6PMTEx+PnnnwEAGzZswB/+8AdkZWVh7NixWL58uW1CWPr0Q2vq27evqK2tFUIIMXXq\nVDFr1ixx4MABsXDhQvHUU0/ZJENwcLCoqqoSQgiRn58vIiMjxdKlS4UQQoSHh9skQ79+/YQQQtTW\n1oouXboiNP9AAAALnUlEQVQo+6ShoUG5z5pGjhwpnnjiCTFy5Ejldu+99yrrbaF///7ixIkT4uDB\ng6JTp07iyy+/FEIIkZOTIwYOHGiTDLKPRx6LJrKPx+DgYOXryMhI8fPPPwshhLhy5YrN9oHFz1qx\nJiEEXFxMkXNycnDkyBEAwMCBAxEWFmazDG5ubgAAg8EAo9GIMWPG4Mcff7TZJWEbGhpw/fp1XL16\nFb/88gsuX74Mb29vXLt2DQ0NDVavX1hYiKCgIEydOhVOTk4QQuDbb7/Fa6+9ZvXaNzQ0NCAkJAQA\n0L17dwwaNAgA0L9//yZjBmuRfTzyWDSRfTy6urqisLAQer0e7u7uuPfeewEA7dq1s9k+sKvRSnBw\nMNLT0wEAYWFhyo/QeXl5+N3vfmeTDF27dm10MRw3Nzfs2rULly5dwokTJ2ySYeLEiejbty8GDBiA\nd955B4MGDcLUqVPx4IMPIikpyer1v/32W0RGRuLNN99Ex44dERMTg/bt2+Oxxx7DY489ZvX6ABr9\nB0lNTVW+FkLYbDYr+3jksWgi+3hcunQp4uLi8PrrryM4OBhDhgxBSkoK4uLi8Oyzz1q9PmBnpx9W\nVFRg1qxZOHDgALp06YIjR45Ar9fDz88PK1assMm7oIKCAri6uqJbt26N1gsh8PXXX2PgwIFWzwCY\n/vy3Y8eO8PLywtmzZ/Htt98iMDDQZj+ZAKZ3Qq+88gq6du2KnTt3oqCgwGa1d+zYgaFDh6JDhw6N\n1p89exYfffQRZs+ebfUMso9HtR6LOTk5CAgIsOmxCMg9HisqKvDBBx/gzJkzqK2thZ+fH5588kkE\nBgbapL5dNfIbLl++jPz8fNTV1UGv1zc5kGWprq5WftR1pAy7du3CwYMHsXjxYpvWVQs1HY87d+5E\nQkKCtPqA6Zvsk08+Ka2+Ix6PdtnIS0tLUVhYCJ1OB19fX/j4+MiOBADo0aMHzp8/7/AZZFu9ejWe\nf/55KbUvXboEb29vm9T6+OOPlVn4jY8Ae/HFF/HXv/4VADB69GirZ/joo4+Ur2VlaI4tX4fbsdWx\naFe/7Dx69CimT5+OiooK6PV6AKYfpzw8PLBq1Sr079/f6hneeecds/dVVVVZvb4aMpw4cQLTpk1D\nYWEhRowYgSVLlsDT0xMAEBUVhezsbKtnUIN9+/Zh2rRp6Ny5M5YvX45Jkyahrq4OALBp0yY8+OCD\nVq2fmJiI4cOHo0uXLgBMI5WrV6/ik08+AWCbJjp27FjpGf77v/8bf/7znwEAubm5GDVqFGprayGE\nwKZNmzBgwACrZ5DNrt6Rh4WFYc2aNYiOjm60/tChQ3j++edx/Phxq2do3749XnvtNbi6ujZaL4TA\n0qVLbXL+sOwMjzzyCBYsWIDo6GisXbsW6enp2LlzJ/z9/REREYGjR49atf4Np0+fxo4dO5Tr3ev1\neiQkJNjs2j6RkZHIyMhAdXU14uPj8cknn2DQoEE4cuSIMju3psOHD2POnDl4+umnMX36dOh0OvTs\n2RP5+flWrau2DDcfcyNGjMDMmTMRHx+P7OxsvPzyyzh48KDVM8g+Fu3qPHJ/f3+z9/Xu3dsmGQYM\nGCAOHz7c7H16vd4hMoSEhDRa3rdvn+jdu7f45z//abPzl9PS0kRYWJhITU0VGzZsEBs2bBCLFy8W\nYWFhYvHixTbJcPO/NTAw0Ox91lRXVyeWLl0qYmJixKFDh4TBYLBJXTVluHlfh4aGNrrP3GVfLUkN\nx6JdNfKZM2eK+Ph4sWnTJvH111+Lr776SmRmZor4+Hjx0ksv2STD6dOnxcWLF5u9r6SkxCEyhIaG\nioqKikbrjh8/Lnr37i28vLysXl8I0zf1mpqaJuuvX79us2/qNzeNbdu2KV83NDQ0+iMRWygsLBRP\nP/206Nmzp03rqiFDx44dlT8I8vLyEleuXBFC2O51UMOxaFejFQDYvXs3du7cqfwI4+vri4SEBIwY\nMUJyMsexceNG9OrVCw899FCj9efPn8cbb7yB999/3+oZAgMDkZWVBYPB0Gj9uXPnEBcXhx9++MHq\nGdRwCiQ1/rR6nU6H/v37w93dHaWlpdi6dSteeuklq9ZXw7Fod41czWSeLaGmDLaQlZWFGTNmwN/f\nX/mM2IKCApw5cwbvvfce4uPjJSeUSw3HgRoy2IIajkW7OmvldhzloFE7W70Ow4cPxw8//IDs7GwU\nFRUpp6I+8MADyp/Ny8TjUR1s8Tqo4ViUf8TbIXO/obblf1w1ZJDN2dm5yXjH0ajhOFBDBtlkH4t2\nN1qRfZrPkiVLkJmZiXHjxinnshcUFGDz5s0YO3asTS4fqoYMsl8HtZC5H9RwHKghA8Dj0a4auRoO\nmj59+iA3N7fJOdw1NTUICgrCv/71L81nUMProAay94Ps40AtGWS/Dqpgk3NjLEQNp/kEBASI/Pz8\nJuvz8/PF/fff7xAZ1PA6qIHs/SD7OFBLBtmvgxrY1Yzc2dkZRUVFTU7zKS4uhrOzs00yvPvuuxg6\ndKjZ31A7QgY1vA5qIHs/yD4O1JJB9uugBnY1WlHDaT4AUF9fL/1sCZkZ1PI6yKaG/eDoxyKgjtdB\nNrtq5ID8g4ZM+DqYcD+og6O/DnbXyImIqDG7+qg3IiJqio2ciMjOsZETEdk5NnKyCykpKbf9ZKRb\nt8nIyEBJSUmbaqxevRobNmy4o3wGgwFlZWV39Fiiu+UYv9Ilu6fT6Vq1zY3tMjIyEBISgu7du7e6\nxt1cG+TG51USycB35KRab775JgICAjBo0KBG13Q+e/Ys4uPj8cADD+DRRx9tdJ8QAh999BFycnLw\nzDPPoH///rh27RreeOMNREVFISQkxGzDvvkdfUxMDObOnYvo6GgEBATgq6++AmA6ze21115DSEgI\nwsLCsHLlSuXxK1asQGRkJEJDQ5VMV65cwXPPPYfo6Gj0798fO3fuBACcOnUK0dHRiIiIQFhYmE3+\nlJ20i42cVCknJwebN2/G8ePHsXv3bhw+fFh5tz1t2jSsWLEC3377Ld566y28+OKLyuN0Oh3GjBmD\nBx54AB988AGOHDmC9u3bY+bMmcjOzsbJkyfxyy+/YNeuXU1q3vyOXqfTob6+Ht988w3effddLFq0\nCACwZs0anD9/HsePH8fx48cxYcIE5fFdunRBTk4Opk+fjrfffhuA6ZvRkCFD8M0332Dfvn34j//4\nD1y9ehWrV6/GrFmzcPToUeTk5CjXCCG6ExytkCodOHAAo0ePRvv27dG+fXskJCQAML3DPXjwIP7t\n3/5N2bampqbZ57h51LFv3z689dZbuHr1KsrKyhAcHIyRI0feNsONT4Dv378/zp07BwD4/PPPMX36\ndDg5md4DeXp6Nrv9xx9/DADYu3cvPvnkE6WxX79+HefPn8dDDz2EN998E4WFhRg9ejT8/f1bvW+I\nbsVGTqp068z5xtcNDQ3w9PRUPjW9pecAgGvXruGll15CTk4OfH19sWjRIly7dq3Fx7dr1w6A6Voe\ndXV1TbK0dvuPP/4Yffr0abRtYGAgBgwYgF27dmHEiBFYvXo1Bg8e3GImouZwtEKq9Oijj2L79u24\ndu0aqqqqlFGIu7s7evbsia1btwIwNdUTJ04oj7vRZN3d3VFZWQkAStP29vZGdXU1PvzwQ7O/PG3p\nF5axsbFYvXo16uvrAQDl5eW33T4uLg7Lly9Xlm98A8rPz0fPnj0xc+ZMPPnkkzh58uRtn4fodtjI\nSZUiIiIwduxYhIWFYcSIEYiKilLu27hxI9auXYvw8HD069dP+QUi8Nu78OTkZLzwwgvo378/2rdv\njz/+8Y/o168fhg8fjujoaLN1zTX4G+unTp2KHj16IDQ0FOHh4cjMzGx22xvbL1iwALW1tQgNDUW/\nfv2wcOFCAMCWLVvQr18/RERE4NSpU5g8eXIb9xDRb3itFSIiO8d35EREdo6NnIjIzrGRExHZOTZy\nIiI7x0ZORGTn2MiJiOwcGzkRkZ37f2BK3Uu/BuzKAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0xf2e8ba8>"
]
}
],
"prompt_number": 50
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"os.chdir(\"..\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 31
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"!rm -rf TempBarometerFiles"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 32
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment