-
-
Save michaelt/2660297 to your computer and use it in GitHub Desktop.
red-black trees in haskell, using GADTs and Zippers (and DataKinds)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE GADTs #-} | |
{-# LANGUAGE RankNTypes #-} | |
{-# LANGUAGE StandaloneDeriving #-} | |
{-# LANGUAGE DataKinds#-} | |
{-# LANGUAGE KindSignatures#-} | |
module RedBlackTree where | |
data Nat = Zero | Succ Nat deriving (Eq, Ord, Show) | |
type One = Succ Zero | |
data RedBlack = Black | Red deriving (Eq, Ord, Show) | |
-- red-black trees are rooted at a black node | |
data RedBlackTree a = forall n. T ( Node Black n a ) | |
deriving instance Show a => Show (RedBlackTree a) | |
-- all paths from a node to a leaf have exactly n black nodes | |
data Node :: RedBlack -> Nat -> * -> * where | |
-- all leafs are black | |
Leaf :: Node Black One a | |
-- internal black nodes can have children of either color | |
B :: Node cL n a -> a -> Node cR n a -> Node Black (Succ n) a | |
-- internal red nodes can only have black children | |
R :: Node Black n a -> a -> Node Black n a -> Node Red n a | |
deriving instance Show a => Show (Node c n a) | |
-- one-hole context for red-black trees | |
data Context :: Nat -> RedBlack -> Nat -> * -> * where | |
-- if we're at the root, the hole is a black node | |
Root :: Context n Black n a | |
-- we can go left or right from a red node hole, creating a hole for a black node | |
BC :: Bool -> a -> Node Black n a -> Context m Red n a -> Context m Black n a | |
-- we can go left or right from a black node hole, creating a hole for either | |
EC :: Bool -> a -> Node cY n a -> Context m Black (Succ n) a -> Context m cX n a | |
deriving instance Show a => Show (Context m c n a) | |
data Zipper m a = forall c n. Zipper (Node c n a) (Context m c n a) | |
deriving instance Show a => Show (Zipper m a) | |
-- create a zipper | |
unZip :: Node Black n a -> Zipper n a | |
unZip = flip Zipper Root | |
-- destroy a zipper | |
zipUp :: Zipper m a -> Node Black m a | |
zipUp (Zipper x Root) = x | |
zipUp (Zipper x (BC goLeft a y c)) = zipUp $ Zipper (if goLeft then R x a y else R y a x) c | |
zipUp (Zipper x (EC goLeft a y c)) = zipUp $ Zipper (if goLeft then B x a y else B y a x) c | |
-- locate the node that should contain a in the red-black tree | |
zipTo :: Ord a => a -> Zipper n a -> Zipper n a | |
zipTo _ z@(Zipper Leaf _) = z | |
zipTo a z@(Zipper (R l a' r) c) = case compare a a' of | |
EQ -> z | |
LT -> zipTo a $ Zipper l (BC True a' r c) | |
GT -> zipTo a $ Zipper r (BC False a' l c) | |
zipTo a z@(Zipper (B l a' r) c) = case compare a a' of | |
EQ -> z | |
LT -> zipTo a $ Zipper l (EC True a' r c) | |
GT -> zipTo a $ Zipper r (EC False a' l c) | |
-- create a red-black tree | |
empty :: RedBlackTree a | |
empty = T Leaf | |
-- insert a node into a red-black tree | |
-- (see http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#Insertion) | |
insert :: Ord a => a -> RedBlackTree a -> RedBlackTree a | |
insert a t@(T root) = case zipTo a (unZip root) of | |
-- find matching leaf and replace with red node (pointing to two leaves) | |
Zipper Leaf c -> insertAt (R Leaf a Leaf) c | |
-- if it's already in the tree, there's no need to modify it | |
_ -> t | |
insertAt :: Node Red n a -> Context m c n a -> RedBlackTree a | |
-- 1) new node is root => paint it black and done | |
insertAt (R l a r) Root = T $ B l a r | |
-- 2) new node's parent is black => done | |
insertAt x (EC b a y c) = T . zipUp $ Zipper x (EC b a y c) | |
-- 3) uncle is red => paint parent/uncle black, g'parent red. recurse on g'parent | |
insertAt x (BC pb pa py (EC gb ga (R ul ua ur) gc)) = insertAt g gc | |
where p = if pb then B x pa py else B py pa x | |
u = B ul ua ur | |
g = if gb then R p ga u else R u ga p | |
-- 4) node is between parent and g'parent => inner rotation | |
insertAt (R l a r) (BC False pa py pc@(EC True _ _ _)) = insertAt (R py pa l) (BC True a r pc) | |
insertAt (R l a r) (BC True pa py pc@(EC False _ _ _)) = insertAt (R r pa py) (BC False a l pc) | |
-- 5) otherwise => outer rotation | |
-- XXX: GHC seems unable to infer that gy is Black so I have to do both cases | |
-- explicitly, rather than | |
-- insertAt x (BC True pa py (EC True ga gy gc)) = | |
-- T . zipUp $ Zipper (B x pa $ R py ga gy) gc | |
-- insertAt x (BC False pa py (EC False ga gy gc)) = | |
-- T . zipUp $ Zipper (B (R gy ga py) pa x) gc | |
insertAt x (BC True pa py (EC True ga gy@Leaf gc)) = | |
T . zipUp $ Zipper (B x pa $ R py ga gy) gc | |
insertAt x (BC True pa py (EC True ga gy@(B _ _ _) gc)) = | |
T . zipUp $ Zipper (B x pa $ R py ga gy) gc | |
insertAt x (BC False pa py (EC False ga gy@Leaf gc)) = | |
T . zipUp $ Zipper (B (R gy ga py) pa x) gc | |
insertAt x (BC False pa py (EC False ga gy@(B _ _ _) gc)) = | |
T . zipUp $ Zipper (B (R gy ga py) pa x) gc | |
-- can't derive, since we abstract over n, so we have to manually | |
-- check for identical structure | |
instance Eq a => Eq (RedBlackTree a) where | |
T Leaf == T Leaf = True | |
T (B l@(B _ _ _) a r@(B _ _ _)) == T (B l'@(B _ _ _) a' r'@(B _ _ _)) = | |
a == a' && T l == T l' && T r == T r' | |
T (B (R ll la lr) a r@(B _ _ _)) == T (B (R ll' la' lr') a' r'@(B _ _ _)) = | |
a == a' && la == la' && | |
T ll == T ll' && T lr == T lr' && T r == T r' | |
T (B l@(B _ _ _) a r@(R rl ra rr)) == T (B l'@(B _ _ _) a' r'@(R rl' ra' rr')) = | |
a == a' && ra == ra' && | |
T l == T l' && T rl == T rl' && T rr == T rr' | |
T (B (R ll la lr) a r@(R rl ra rr)) == T (B (R ll' la' lr') a' r'@(R rl' ra' rr')) = | |
a == a' && la == la' && ra == ra' && | |
T ll == T ll' && T lr == T lr' && T rl == T rl' && T rr == T rr' | |
_ == _ = False | |
-- can't derive, since B abstracts over child node colors, so | |
-- manually check for identical structure | |
instance (Eq a) => Eq (Node c n a) where | |
Leaf == Leaf = True | |
R l a r == R l' a' r' = a == a' && l == l' && r == r' | |
b@(B _ _ _) == b'@(B _ _ _) = T b == T b' | |
_ == _ = False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment