Created
April 27, 2021 07:13
-
-
Save michelkana/4b12a2d16b09cb0d41116356262464a2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
def running_predictions(prediction_dataset, targets): | |
n_trees = prediction_dataset.shape[1] | |
running_percent_1s = np.cumsum(prediction_dataset, axis=1)/np.arange(1,n_trees+1) | |
running_conclusions = running_percent_1s > 0.5 | |
running_correctnesss = running_conclusions == targets.reshape(-1,1) | |
return np.mean(running_correctnesss, axis=0) | |
def plot_bagging_predictions(bagging_size, bagging_train, y_train, bagging_test, y_test, | |
sm_best_tree_accuracy_test, sm_overfit_accuracy_test, title): | |
bagging_accuracy_train = running_predictions(bagging_train, y_train) | |
bagging_accuracy_test = running_predictions(bagging_test, y_test) | |
fig, ax = plt.subplots(1,1, figsize=(15,5)) | |
bagging_sizes = range(1, bagging_size+1) | |
ax.plot(bagging_sizes, bagging_accuracy_train, '-o', label='Bagging accuracy on training set', alpha=0.9) | |
ax.plot(bagging_sizes, bagging_accuracy_test, '-x', label='Bagging accuracy on test set', alpha=0.9) | |
ax.axhline(y=sm_best_tree_accuracy_test, label='Best single tree accuracy', alpha=0.9) | |
ax.axhline(y=sm_overfit_accuracy_test, label='Overfit single tree accuracy', c='r', alpha=0.9) | |
ax.set_title(title, fontsize=16) | |
ax.set_xlabel('Number of bootstraps', fontsize=14) | |
ax.set_ylabel('Accuracy', fontsize=14) | |
ax.set_xticks(bagging_sizes) | |
ax.legend() | |
plot_bagging_predictions(bagging_size, bagging_train, y_train, bagging_test, y_test, | |
sm_best_tree_accuracy_test, sm_overfit_accuracy_test, | |
'Bagging ensemble performance') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment