Skip to content

Instantly share code, notes, and snippets.

@michelkana
Created September 22, 2021 13:26
Show Gist options
  • Save michelkana/ef2008e261824c07c4c5a7391d65529f to your computer and use it in GitHub Desktop.
Save michelkana/ef2008e261824c07c4c5a7391d65529f to your computer and use it in GitHub Desktop.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# convert stars' dictionary to pandas dataframe
frame = pd.DataFrame(star_table)
# format stars' dataframe
frame.credits = frame.credits.astype('int')
frame.year_born = frame.year_born.astype('int')
frame.year_first_movie = frame.year_first_movie.astype('int')
# calculate age at first movie
frame['age_at_first_movie'] = frame['year_first_movie'] - frame['year_born']
# find former child actors
print('{} performers started as child actors'.format(frame[frame.age_at_first_movie <= 12].shape[(0)]))
# plot stars' age distribution
frame.year_born.hist()
# plot credits vs. gender
sns.catplot(
data=frame, kind="bar",
x="gender", y="credits",
ci="sd", palette="dark", alpha=.6, height=6
)
# plot count of female vs male actors
sns.countplot(x="gender", data=frame)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment