Last active
November 26, 2023 19:12
-
-
Save mick001/49fad7f4c6112d954aff to your computer and use it in GitHub Desktop.
A neural network exaple in R. Full article at: http://datascienceplus.com/fitting-neural-network-in-r/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Set a seed | |
set.seed(500) | |
library(MASS) | |
data <- Boston | |
# Check that no data is missing | |
apply(data,2,function(x) sum(is.na(x))) | |
# Train-test random splitting for linear model | |
index <- sample(1:nrow(data),round(0.75*nrow(data))) | |
train <- data[index,] | |
test <- data[-index,] | |
# Fitting linear model | |
lm.fit <- glm(medv~., data=train) | |
summary(lm.fit) | |
# Predicted data from lm | |
pr.lm <- predict(lm.fit,test) | |
# Test MSE | |
MSE.lm <- sum((pr.lm - test$medv)^2)/nrow(test) | |
#------------------------------------------------------------------------------- | |
# Neural net fitting | |
# Scaling data for the NN | |
maxs <- apply(data, 2, max) | |
mins <- apply(data, 2, min) | |
scaled <- as.data.frame(scale(data, center = mins, scale = maxs - mins)) | |
# Train-test split | |
train_ <- scaled[index,] | |
test_ <- scaled[-index,] | |
# NN training | |
library(neuralnet) | |
n <- names(train_) | |
f <- as.formula(paste("medv ~", paste(n[!n %in% "medv"], collapse = " + "))) | |
nn <- neuralnet(f,data=train_,hidden=c(5,3),linear.output=T) | |
# Visual plot of the model | |
plot(nn) | |
# Predict | |
pr.nn <- compute(nn,test_[,1:13]) | |
# Results from NN are normalized (scaled) | |
# Descaling for comparison | |
pr.nn_ <- pr.nn$net.result*(max(data$medv)-min(data$medv))+min(data$medv) | |
test.r <- (test_$medv)*(max(data$medv)-min(data$medv))+min(data$medv) | |
# Calculating MSE | |
MSE.nn <- sum((test.r - pr.nn_)^2)/nrow(test_) | |
# Compare the two MSEs | |
print(paste(MSE.lm,MSE.nn)) | |
# Plot predictions | |
par(mfrow=c(1,2)) | |
plot(test$medv,pr.nn_,col='red',main='Real vs predicted NN',pch=18,cex=0.7) | |
abline(0,1,lwd=2) | |
legend('bottomright',legend='NN',pch=18,col='red', bty='n') | |
plot(test$medv,pr.lm,col='blue',main='Real vs predicted lm',pch=18, cex=0.7) | |
abline(0,1,lwd=2) | |
legend('bottomright',legend='LM',pch=18,col='blue', bty='n', cex=.95) | |
# Compare predictions on the same plot | |
plot(test$medv,pr.nn_,col='red',main='Real vs predicted NN',pch=18,cex=0.7) | |
points(test$medv,pr.lm,col='blue',pch=18,cex=0.7) | |
abline(0,1,lwd=2) | |
legend('bottomright',legend=c('NN','LM'),pch=18,col=c('red','blue')) | |
#------------------------------------------------------------------------------- | |
# Cross validating | |
library(boot) | |
set.seed(200) | |
# Linear model cross validation | |
lm.fit <- glm(medv~.,data=data) | |
cv.glm(data,lm.fit,K=10)$delta[1] | |
# Neural net cross validation | |
set.seed(450) | |
cv.error <- NULL | |
k <- 10 | |
# Initialize progress bar | |
library(plyr) | |
pbar <- create_progress_bar('text') | |
pbar$init(k) | |
for(i in 1:k){ | |
index <- sample(1:nrow(data),round(0.9*nrow(data))) | |
train.cv <- scaled[index,] | |
test.cv <- scaled[-index,] | |
nn <- neuralnet(f,data=train.cv,hidden=c(5,2),linear.output=T) | |
pr.nn <- compute(nn,test.cv[,1:13]) | |
pr.nn <- pr.nn$net.result*(max(data$medv)-min(data$medv))+min(data$medv) | |
test.cv.r <- (test.cv$medv)*(max(data$medv)-min(data$medv))+min(data$medv) | |
cv.error[i] <- sum((test.cv.r - pr.nn)^2)/nrow(test.cv) | |
pbar$step() | |
} | |
# Average MSE | |
mean(cv.error) | |
# MSE vector from CV | |
cv.error | |
# Visual plot of CV results | |
boxplot(cv.error,xlab='MSE CV',col='cyan', | |
border='blue',names='CV error (MSE)', | |
main='CV error (MSE) for NN',horizontal=TRUE) |
Thank you for this contribution. A good code for beginner !
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks!