Created
August 14, 2018 19:11
-
-
Save mick001/d5786de2788245c606cc77abac273c50 to your computer and use it in GitHub Desktop.
Support vector machine classifier example in R for Olivetti faces dataset.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#------------------------------------------------------------------------------- | |
# Setup | |
require(dplyr) | |
require(e1071) | |
load(file="images_formatted.Rdata") | |
D <- out; rm(out) | |
# Scale the data. Note that scale returns a matrix | |
D <- scale(D) | |
# Reproducibility | |
set.seed(500) | |
# Index to be sampled for train/test split | |
index <- 1:nrow(D) | |
# Number of cross validation runs | |
K <- 20 | |
#------------------------------------------------------------------------------- | |
# SVC model on real data | |
# Assign variable names | |
colnames(D) <- paste("pixel_", 1:4096, sep = "") | |
# Convert images to dataframe and add label information as a factor | |
D <- D %>% tbl_df() %>% mutate(label = as.factor(y_df)) | |
accuracy_first <- list() | |
for(i in 1:K) | |
{ | |
# Split data into a train and test set. | |
testindex <- sample(index, trunc(length(index)/3)) | |
# Test set. 1/3 of full data. | |
testset <- D[testindex, ] | |
# Train set. 2/3 of full data. | |
trainset <- D[-testindex, ] | |
# Solution to test set | |
actual_sol <- testset %>% select(label) %>% pull() | |
# SVC model on real data: train | |
svc.model <- svm(label ~., data = trainset, cost = 1, kernel = "linear") | |
# SVC model on real data: classify test set | |
svc.pred <- predict(svc.model, testset[, -4097]) | |
# Accuracy of SVC on real data | |
accuracy_first[[i]] <- sum(svc.pred == actual_sol)/length(actual_sol) | |
# Print accuracy of current iteration | |
print(accuracy_first[[i]]) | |
} | |
# Average accuracy of the model | |
print(mean(as.numeric(accuracy_first))) | |
rm(testset, trainset, actual_sol, svc.model, svc.pred, i) | |
#------------------------------------------------------------------------------- | |
# SVC model on PCA (30 principal components) | |
# Run PCA on data | |
pca_faces <- D %>% select(-label) %>% as.matrix() %>% prcomp() | |
plot((cumsum(pca_faces$sdev^2)/sum(pca_faces$sdev^2))[1:30], type="o", xlab = "Eigenvalue #", ylab = "% of total variance", main = "Percentage of total variance explained", col = "blue") | |
plot((pca_faces$sdev^2)[1:30], type="o", xlab = "Eigenvalue #", ylab = "Magnitude", main = "Magnitude of eigenvalues", col = "green") | |
# % of total variance explained with 30 components | |
(cumsum(pca_faces$sdev^2)/sum(pca_faces$sdev^2))[30] | |
accuracy_second <- list() | |
for(i in 1:K) | |
{ | |
# Split data into a train and test set | |
testindex <- sample(index, trunc(length(index)/3)) | |
# Test set from PCA | |
testset <- as.matrix(D[testindex, -4097]) %*% pca_faces$rotation[, 1:30] | |
colnames(testset) <- paste("PC_", 1:30, sep="") | |
# Solutions to test set | |
actual_sol <- D[testindex, 4097] %>% pull(label) | |
# Train set from PCA | |
trainset <- as.matrix(D[-testindex, -4097]) %*% pca_faces$rotation[, 1:30] | |
trainset <- as.data.frame(trainset) | |
colnames(trainset) <- paste("PC_", 1:30, sep="") | |
# Add label information to test set | |
trainset$label <- D[-testindex, 4097] %>% pull(label) | |
# SVC model on PCA data | |
svc.model <- svm(label ~., data = trainset, cost = 1, kernel = "linear") | |
svc.pred <- predict(svc.model, testset) | |
# Accuracy of SVM on real data | |
accuracy_second[[i]] <- sum(svc.pred == actual_sol)/length(actual_sol) | |
print(accuracy_second[[i]]) | |
} | |
print(mean(as.numeric(accuracy_second))) | |
#------------------------------------------------------------------------------- | |
# Comparison between the two accuracies | |
results <- data.frame(data_model = as.numeric(accuracy_first), | |
pca_model = as.numeric(accuracy_second)) | |
results %>% summarise_all(mean) | |
results %>% summarise_all(sd) | |
require(reshape2) | |
require(ggplot2) | |
ggplot(melt(results), aes(x = variable, y = value, fill = variable)) + | |
geom_boxplot() + | |
ggtitle("Comparison between accuracies of the two models") + | |
ylab("Accuracy") + | |
xlab("Model") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment