Last active
August 27, 2015 23:02
-
-
Save mick001/e2c94b0f6e20b356f54d to your computer and use it in GitHub Desktop.
Example on how to start with scikit-learn and use a Random Forest classifier for a classification task
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.cross_validation import train_test_split | |
import pandas as pd | |
import os | |
# Loading data | |
data = pd.read_csv('data.csv') | |
# Encoding categorical features into numerical | |
buying_map = {'vhigh':4,'high':3,'med':2,'low':1} | |
maint_map = {'vhigh':4,'high':3,'med':2,'low':1} | |
doors_map = {'5more':6} | |
persons_map = {'more':5} | |
lug_boot_map = {'small':1,'med':2,'big':3} | |
safety_map = {'high':3,'med':2,'low':1} | |
class_map = {'vgood':4,'good':3,'acc':2,'unacc':1} | |
# Mapping dictionary | |
dict_map = dict() | |
dict_map['buying'] = buying_map | |
dict_map['maint'] = maint_map | |
dict_map['doors'] = doors_map | |
dict_map['persons'] = persons_map | |
dict_map['lug_boot'] = lug_boot_map | |
dict_map['safety'] = safety_map | |
dict_map['class'] = class_map | |
data = data.replace(dict_map) | |
# Be sure that the data is of type int (float is fine too) | |
data = data.applymap(int) | |
# Splitting X and y | |
X = data[data.keys()[:-1]].as_matrix() | |
y = data['class'].as_matrix() | |
# Train test splitting | |
X_train, X_test, y_train, y_test = train_test_split(X, | |
y,test_size=0.3 | |
,random_state=0) | |
# Model fitting | |
forest = RandomForestClassifier(n_estimators=500) | |
forest.fit(X_train,y_train) | |
# Model score | |
print(forest.score(X_test,y_test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment