Skip to content

Instantly share code, notes, and snippets.

@mieki256
Last active September 23, 2024 07:35
Show Gist options
  • Save mieki256/de2e21417528f724da4853cc30d9ef95 to your computer and use it in GitHub Desktop.
Save mieki256/de2e21417528f724da4853cc30d9ef95 to your computer and use it in GitHub Desktop.
Yliluoma's ordered dithering algorithm 1, 2, 3. Python version.
#!python
# -*- mode: python; Encoding: utf-8; coding: utf-8 -*-
# Last updated: <2022/07/13 01:32:08 +0900>
"""
Yliluoma's ordered dithering algorithm 1, 2, 3 and adobe like
Arbitrary-palette positional dithering algorithm
https://bisqwit.iki.fi/story/howto/dither/jy/
Usage:
py ThisScript.py -i INPUT.png -o OUTPUT.png [-m num] [-d num] [-c] [-p PALETTE]
-m num, --mode num : 0-5
0=1a, 1=1ba, 2=1bb,
3=faster,
4=tri-tone,
5=algorithm 2,
6=algorithm 2 gamma correct,
7=algorithm 3
8=adobe like pattern dither
-d num, --dither num : 2 or 4 or 8 (Dither 2x2, 4x4, 8x8)
-c, --ciede2000 : enable CIEDE2000 (mode 6 and 7)
-p PALETTE, --palette PALETTE : Palette file (.png or .gpl)
Windows10 x64 21H2 + Python 3.9.13 64bit
"""
import os
import sys
from PIL import Image
from tqdm import tqdm
import argparse
import copy
import math
import re
gamma = 2.2 # Gamma correction we use.
dithermaps = {
2: [
[0, 2],
[3, 1]
],
4: [
[0, 8, 2, 10],
[12, 4, 14, 6],
[3, 11, 1, 9],
[15, 7, 13, 5]
],
8: [
[0, 48, 12, 60, 3, 51, 15, 63],
[32, 16, 44, 28, 35, 19, 47, 31],
[8, 56, 4, 52, 11, 59, 7, 55],
[40, 24, 36, 20, 43, 27, 39, 23],
[2, 50, 14, 62, 1, 49, 13, 61],
[34, 18, 46, 30, 33, 17, 45, 29],
[10, 58, 6, 54, 9, 57, 5, 53],
[42, 26, 38, 22, 41, 25, 37, 21]
]
}
# pal = [
# 0x080000, 0x201A0B, 0x432817, 0x492910,
# 0x234309, 0x5D4F1E, 0x9C6B20, 0xA9220F,
# 0x2B347C, 0x2B7409, 0xD0CA40, 0xE8A077,
# 0x6A94AB, 0xD5C4B3, 0xFCE76E, 0xFCFAE2
# ]
#
# def pal2rgb():
# lst = []
# for v in pal:
# r, g, b = (v >> 16), ((v >> 8) & 0x0ff), (v & 0x0ff)
# lst.append((r, g, b))
# return lst
pal = [
# (r, g, b)
(8, 0, 0), (32, 26, 11), (67, 40, 23), (73, 41, 16),
(35, 67, 9), (93, 79, 30), (156, 107, 32), (169, 34, 15),
(43, 52, 124), (43, 116, 9), (208, 202, 64), (232, 160, 119),
(106, 148, 171), (213, 196, 179), (252, 231, 110), (252, 250, 226)
]
# CIE C illuminant
illum = [
0.488718, 0.176204, 0.000000,
0.310680, 0.812985, 0.0102048,
0.200602, 0.0108109, 0.989795
]
class Palette:
""" Palette class. """
def __init__(self, filename):
_, ext = os.path.splitext(filename)
if ext == ".gpl":
# GIMP palette file
self.get_palette_from_gpl(filename)
elif ext == ".png" or ext == ".gif":
self.get_palette_from_image(filename)
else:
print("Error: Unsupported file = %s" % filename)
sys.exit()
def get_palette_from_gpl(self, filename):
""" Get palette data from GIMP palette file (.gpl) """
with open(filename) as f:
data = f.read()
lst = data.splitlines()
self.colors = []
self.palette = []
for s in lst:
if re.match(r"^\s*#", s):
continue
if re.match("^GIMP Palette", s):
continue
m = re.match(r"^Name:\s*(.+)$", s)
if m:
# print("Palette name: %s" % m.groups()[0])
continue
if re.match(r"^Columns", s):
continue
m = re.match(r"^\s*(\d+)\s+(\d+)\s+(\d+)", s)
if m:
r, g, b = m.groups()
r = int(r)
g = int(g)
b = int(b)
self.palette.append((r, g, b))
def get_palette_from_image(self, filename):
""" Get palette data from image. """
im = Image.open(filename)
w, h = im.size
# print("# im.mode = %s" % im.mode)
# print("%d x %d" % im.size)
self.colors = []
self.palette = []
if im.mode == "P":
# index color image
cols = im.getcolors()
p = im.getpalette()
if p is None:
print("Error: Not found palette.")
sys.exit()
for cnt, i in cols:
r, g, b = p[i * 3], p[i * 3 + 1], p[i * 3 + 2]
self.palette.append((r, g, b))
self.colors.append((cnt, (r, g, b)))
elif im.mode == "RGB":
# RGB image
rgb_count = {}
src = im.load()
for y in range(h):
for x in range(w):
col = src[x, y]
if col in rgb_count:
rgb_count[col] += 1
else:
rgb_count[col] = 1
self.palette = list(rgb_count.keys())
for c in self.palette:
cnt = rgb_count[c]
self.colors.append((cnt, c))
else:
print("Error: Unsupported image mode = %s" % im.mode)
sys.exit()
def count(self):
return sorted(self.colors, key=lambda x: x[0], reverse=True)
def gamma_correct(v):
return pow(v, gamma)
def gamma_uncorrect(v):
return pow(v, 1.0 / gamma)
class LabItem:
""" CIE L*a*b* color value with C and h added. """
def __init__(self, r, g, b, divide):
self.set(r / divide, g / divide, b / divide)
def set(self, r, g, b):
xx = illum[0] * r + illum[3] * g + illum[6] * b
yy = illum[1] * r + illum[4] * g + illum[7] * b
zz = illum[2] * r + illum[5] * g + illum[8] * b
x = xx / (illum[0] + illum[1] + illum[2])
y = yy / (illum[3] + illum[4] + illum[5])
z = zz / (illum[6] + illum[7] + illum[8])
threshold1 = (6 * 6 * 6.0) / (29 * 29 * 29.0)
threshold2 = (29 * 29.0) / (6 * 6 * 3.0)
x1 = pow(x, 1.0 / 3.0) if x > threshold1 else ((threshold2 * x) + (4 / 29.0))
y1 = pow(y, 1.0 / 3.0) if y > threshold1 else ((threshold2 * y) + (4 / 29.0))
z1 = pow(z, 1.0 / 3.0) if z > threshold1 else ((threshold2 * z) + (4 / 29.0))
self.lum = (29 * 4) * y1 - (4 * 4)
self.a = 500 * (x1 - y1)
self.b = 200 * (y1 - z1)
ct = self.a * self.a + self.b + self.b
# ct = self.a * self.a + self.b * self.b
if ct < 0:
ct = 0
self.c = math.sqrt(ct)
self.h = math.atan2(self.b, self.a)
def color_compare(r1, g1, b1, r2, g2, b2):
""" Compare the difference of two RGB values. """
r = (r1 - r2) / 255.0
g = (g1 - g2) / 255.0
b = (b1 - b2) / 255.0
return r * r + g * g + b * b
def color_compare_ccir601(r1, g1, b1, r2, g2, b2):
"""
Compare the difference of two RGB values.
weigh by CCIR 601 luminosity.
"""
luma1 = (r1 * 299 + g1 * 587 + b1 * 114) / (255.0 * 1000.0)
luma2 = (r2 * 299 + g2 * 587 + b2 * 114) / (255.0 * 1000.0)
lumad = luma1 - luma2
r = (r1 - r2) / 255.0
g = (g1 - g2) / 255.0
b = (b1 - b2) / 255.0
return (r * r * 0.299 + g * g * 0.587 + b * b * 0.114) * 0.75 + lumad * lumad
def color_compare_ciede2000(lab1, lab2):
"""
From the paper "The CIEDE2000 Color-Difference Formula: Implementation Notes,
Supplementary Test Data, and Mathematical Observations",
by Gaurav Sharma, Wencheng Wu and Edul N. Dalal,
Color Res. Appl., vol. 30, no. 1, pp. 21-30, Feb. 2005.
Return the CIEDE2000 Delta E color difference measure squared, for two Lab values
"""
# Compute Cromanance and Hue angles
cab = 0.5 * (lab1.c + lab2.c)
cab7 = pow(cab, 7.0)
g = 0.5 * (1.0 - math.sqrt(cab7 / (cab7 + 6103515625.0)))
a1 = (1.0 + g) * lab1.a
a2 = (1.0 + g) * lab2.a
c1 = math.sqrt(a1 * a1 + lab1.b * lab1.b)
c2 = math.sqrt(a2 * a2 + lab2.b * lab2.b)
if c1 < 1e-9:
h1 = 0.0
else:
h1 = math.degrees(math.atan2(lab1.b, a1))
if h1 < 0.0:
h1 += 360.0
if c2 < 1e-9:
h2 = 0.0
else:
h2 = math.degrees(math.atan2(lab2.b, a2))
if h2 < 0.0:
h2 += 360.0
# Compute delta L, C and H
dl = lab2.lum - lab1.lum
dc = c2 - c1
if c1 < 1e-9 or c2 < 1e-9:
dhh = 0.0
else:
dhh = h2 - h1
if dhh > 180.0:
dhh -= 360.0
elif dhh < -180.0:
dhh += 360.0
dh = 2.0 * math.sqrt(c1 * c2) * math.sin(math.radians(0.5 * dhh))
lum = 0.5 * (lab1.lum + lab2.lum)
c = 0.5 * (c1 + c2)
if c1 < 1e-9 or c2 < 1e-9:
h = h1 + h2
else:
h = h1 + h2
if abs(h1 - h2) > 180.0:
if h < 360.0:
h += 360.0
elif h >= 360.0:
h -= 360.0
h *= 0.5
t = 1.0 \
- 0.17 * math.cos(math.radians(h - 30.0)) \
+ 0.24 * math.cos(math.radians(2.0 * h)) \
+ 0.32 * math.cos(math.radians(3.0 * h + 6.0)) \
- 0.2 * math.cos(math.radians(4.0 * h - 63.0))
hh = (h - 275.0) / 25.0
ddeg = 30.0 * math.exp(-hh * hh)
c7 = pow(c, 7.0)
rc = 2.0 * math.sqrt(c7 / (c7 + 6103515625.0))
l50sq = (lum - 50.0) * (lum - 50.0)
sl = 1.0 + (0.015 * l50sq) / math.sqrt(20.0 + l50sq)
sc = 1.0 + 0.045 * c
sh = 1.0 + 0.015 * c * t
rt = -math.sin(math.radians(2 * ddeg)) * rc
dlsq = dl / sl
dcsq = dc / sc
dhsq = dh / sh
return dlsq * dlsq + dcsq * dcsq + dhsq * dhsq + rt * dcsq * dhsq
def evaluate_mixing_error(r, g, b, r0, g0, b0, r1, g1, b1, r2, g2, b2, ratio, mode):
"""
Args:
r, g, b int: Desired color
r0, g0, b0 int: Mathematical mix product
r1, g1, b1 int: Mix component 1
r2, g2, b2 int: Mix component 2
ratio float: Mixing ratio
mode int: 0=1a, 1=1ba, 2=1bb, 3=1c, 4=1d
"""
if mode == 0:
# 0: 1a
return color_compare(r, g, b, r0, g0, b0)
elif mode == 1:
# 1: 1ba
cc0 = color_compare(r, g, b, r0, g0, b0)
cc1 = color_compare(r1, g1, b1, r2, g2, b2)
return cc0 + cc1 * 0.1
else:
# 2, 3, 4: use CCIR 601
cc0 = color_compare_ccir601(r, g, b, r0, g0, b0)
cc1 = color_compare_ccir601(r1, g1, b1, r2, g2, b2)
return cc0 + cc1 * 0.1 * (abs(ratio - 0.5) + 0.5)
def devise_best_mixing_plan(col, mode, d_range, pal):
r, g, b = col
r_colors = [0, 0]
r_ratio = 0.5
least_penalty = 1e99
# Loop through every unique combination of two colors from the palette,
# and through each possible way to mix those two colors.
# They can be mixed in exactly 64 ways, when the threshold matrix is 8x8.
len_pal = len(pal)
for index1 in range(len_pal):
for index2 in range(index1, len_pal, 1):
for ratio in range(d_range):
if index1 == index2 and ratio != 0:
break
# Determine the two component colors
r1, g1, b1 = pal[index1]
r2, g2, b2 = pal[index2]
# Determine what mixing them in this proportion will produce
r0 = r1 + ratio * (r2 - r1) // d_range
g0 = g1 + ratio * (g2 - g1) // d_range
b0 = b1 + ratio * (b2 - b1) // d_range
# Determine how well that matches what we want to accomplish
penalty = evaluate_mixing_error(r, g, b,
r0, g0, b0,
r1, g1, b1,
r2, g2, b2,
ratio / d_range, mode)
if penalty < least_penalty:
# Keep the result that has the smallest error
least_penalty = penalty
r_colors[0] = index1
r_colors[1] = index2
r_ratio = ratio / d_range
return (r_colors, r_ratio)
def devise_best_mixing_plan_fast(col, mode, d_range, pal):
r, g, b = col
r_colors = [0, 0]
r_ratio = 0.5
least_penalty = 1e99
len_pal = len(pal)
for index1 in range(len_pal):
for index2 in range(index1, len_pal, 1):
# Determine the two component colors
color1 = pal[index1]
color2 = pal[index2]
r1, g1, b1 = color1
r2, g2, b2 = color2
ratio = d_range / 2
if color1 != color2:
# Determine the ratio of mixing for each channel.
# solve(r1 + ratio*(r2-r1)/64 = r, ratio)
# Take a weighed average of these three ratios according to the
# perceived luminosity of each channel (according to CCIR 601).
if r2 != r1:
rr = (299 * d_range * int(r - r1) / int(r2 - r1))
rd = 299
else:
rr = 0
rd = 0
if g2 != g1:
gg = (587 * d_range * int(g - g1) / int(g2 - g1))
gd = 587
else:
gg = 0
gd = 0
if b2 != b1:
bb = (114 * d_range * int(b - b1) / int(b2 - b1))
bd = 114
else:
bb = 0
bd = 0
ratio = (rr + gg + bb) / (rd + gd + bd)
if ratio < 0:
ratio = 0
elif ratio > (d_range - 1):
ratio = d_range - 1
# Determine what mixing them in this proportion will produce
r0 = r1 + ratio * int(r2 - r1) / d_range
g0 = g1 + ratio * int(g2 - g1) / d_range
b0 = b1 + ratio * int(b2 - b1) / d_range
penalty = evaluate_mixing_error(
r, g, b, r0, g0, b0, r1, g1, b1, r2, g2, b2, ratio / d_range, 2)
if penalty < least_penalty:
least_penalty = penalty
r_colors[0] = index1
r_colors[1] = index2
r_ratio = ratio / d_range
return (r_colors, r_ratio)
def devise_best_mixing_plan_tritone(col, mode, d_range, pal):
r, g, b = col
r_colors = [0, 0, 0, 0]
r_ratio = 0.5
least_penalty = 1e99
len_pal = len(pal)
for index1 in range(len_pal):
for index2 in range(index1, len_pal, 1):
# Determine the two component colors
color1 = pal[index1]
color2 = pal[index2]
r1, g1, b1 = color1
r2, g2, b2 = color2
ratio = d_range / 2
if color1 != color2:
# Determine the ratio of mixing for each channel.
# solve(r1 + ratio*(r2-r1)/64 = r, ratio)
# Take a weighed average of these three ratios according to the
# perceived luminosity of each channel (according to CCIR 601).
if r2 != r1:
rr = (299 * d_range * int(r - r1) / int(r2 - r1))
rd = 299
else:
rr = 0
rd = 0
if g2 != g1:
gg = (587 * d_range * int(g - g1) / int(g2 - g1))
gd = 587
else:
gg = 0
gd = 0
if b2 != b1:
bb = (114 * d_range * int(b - b1) / int(b2 - b1))
bd = 114
else:
bb = 0
bd = 0
ratio = (rr + gg + bb) / (rd + gd + bd)
if ratio < 0:
ratio = 0
elif ratio > (d_range - 1):
ratio = d_range - 1
# Determine what mixing them in this proportion will produce
r0 = r1 + ratio * int(r2 - r1) / d_range
g0 = g1 + ratio * int(g2 - g1) / d_range
b0 = b1 + ratio * int(b2 - b1) / d_range
penalty = evaluate_mixing_error(
r, g, b, r0, g0, b0, r1, g1, b1, r2, g2, b2, ratio / d_range, 2)
if penalty < least_penalty:
least_penalty = penalty
r_colors[0] = index1
r_colors[1] = index2
r_ratio = ratio / d_range
if index1 != index2:
for index3 in range(len_pal):
if index3 == index2 or index3 == index1:
continue
# 50% index3, 25% index2, 25% index1
color3 = pal[index3]
r3, g3, b3 = color3
r0 = (r1 + r2 + r3 * 2.0) / 4.0
g0 = (g1 + g2 + g3 * 2.0) / 4.0
b0 = (b1 + b2 + b3 * 2.0) / 4.0
cc0 = color_compare_ccir601(r, g, b, r0, g0, b0)
cc1 = color_compare_ccir601(r1, g1, b1, r2, g2, b2)
cc2 = color_compare_ccir601(
(r1 + r2) / 2, (g1 + g2) / 2, (b1 + b2) / 2, r3, g3, b3)
# original
# cc2 = color_compare_ccir601(
# (r1 + g1) / 2, (g1 + g2) / 2, (b1 + b2) / 2, r3, g3, b3)
penalty = cc0 + cc1 * 0.025 + cc2 * 0.025
if penalty < least_penalty:
least_penalty = penalty
r_colors[0] = index3 # (0,0) index3 occurs twice
r_colors[1] = index1 # (0,1)
r_colors[2] = index2 # (1,0)
r_colors[3] = index3 # (1,1)
r_ratio = 4.0
return (r_colors, r_ratio)
def devise_best_mixing_plan2(src, n_colors, luma, pal):
r_colors = [0] * n_colors
proportion_total = 0
so_far = [0] * 3
while proportion_total < n_colors:
chosen_amount = 1
chosen = 0
max_test_count = max([1, proportion_total])
least_penalty = -1
for index in range(n_colors):
sum = copy.copy(so_far)
add = copy.copy(list(pal[index]))
p = 1
while p <= max_test_count:
for c in range(3):
sum[c] += add[c]
for c in range(3):
add[c] += add[c]
t = proportion_total + p
test = [sum[0] / t, sum[1] / t, sum[2] / t]
penalty = color_compare_ccir601(src[0], src[1], src[2],
test[0], test[1], test[2])
if penalty < least_penalty or least_penalty < 0:
least_penalty = penalty
chosen = index
chosen_amount = p
p *= 2
for i in range(chosen_amount):
if proportion_total >= n_colors:
break
r_colors[proportion_total] = chosen
proportion_total += 1
for c in range(3):
so_far[c] += (pal[chosen][c] * chosen_amount)
# Sort the colors according to luminance
# std::sort(result.colors, result.colors + MixingPlan::n_colors, PaletteCompareLuma);
cols = sorted(r_colors, key=lambda x: luma[x])
return cols
def devise_best_mixing_plan2g(src, n_colors, limit, luma, pal_g, meta, ciede2000, pal):
r, g, b = src
# Input color in RGB
input_rgb = [r, g, b]
# Input color in CIE L*a*b*
inputlab = LabItem(r, g, b, 255.0)
# Tally so far (gamma-corrected)
so_far = [0] * 3
r_colors = []
while len(r_colors) < limit:
chosen_amount = 1
chosen = 0
if len(r_colors) == 0:
max_test_count = 1
else:
max_test_count = len(r_colors)
least_penalty = -1
for index in range(n_colors):
# col = pal[index]
sum = [so_far[0], so_far[1], so_far[2]]
add = [pal_g[index][0], pal_g[index][1], pal_g[index][2]]
p = 1
while p <= max_test_count:
for c in range(3):
sum[c] += add[c]
for c in range(3):
add[c] += add[c]
t = len(r_colors) + p
test = [
gamma_uncorrect(sum[0] / t),
gamma_uncorrect(sum[1] / t),
gamma_uncorrect(sum[2] / t)
]
if ciede2000:
test_lab = LabItem(test[0], test[1], test[2], 1.0)
penalty = color_compare_ciede2000(test_lab, inputlab)
else:
penalty = color_compare_ccir601(
input_rgb[0], input_rgb[1], input_rgb[2],
test[0] * 255.0, test[1] * 255.0, test[2] * 255.0
)
if penalty < least_penalty or least_penalty < 0:
least_penalty = penalty
chosen = index
chosen_amount = p
p *= 2
# Append "chosen_amount" times "chosen" to the color list
# result.resize(result.size() + chosen_amount, chosen);
cnt = len(r_colors) + chosen_amount
while len(r_colors) < cnt:
r_colors.append(chosen)
for c in range(3):
so_far[c] += (pal_g[chosen][c] * chosen_amount)
# Sort the colors according to luminance
# std::sort(result.begin(), result.end(), PaletteCompareLuma);
cols = sorted(r_colors, key=lambda x: luma[x])
return cols
def devise_best_mixing_plan3(src, n_colors, limit, luma, pal_g, meta, ciede2000, pal):
r, g, b = src
# Input color in RGB
input_rgb = [r, g, b]
# Input color in CIE L*a*b*
inputlab = LabItem(r, g, b, 255.0)
solution = {}
# The penalty of our currently "best" solution.
current_penalty = -1
# First, find the closest color to the input color. It is our seed.
if True:
chosen = 0
for index in range(n_colors):
cr, cg, cb = pal[index]
if ciede2000:
test_lab = LabItem(cr, cg, cb, 255.0)
penalty = color_compare_ciede2000(inputlab, test_lab)
else:
penalty = color_compare_ccir601(
input_rgb[0], input_rgb[1], input_rgb[2],
cr, cg, cb
)
if penalty < current_penalty or current_penalty < 0:
current_penalty = penalty
chosen = index
solution[chosen] = limit
dbllimit = 1.0 / limit
while current_penalty != 0.0:
# Find out if there is a region in Solution that
# can be split in two for benefit.
best_penalty = current_penalty
best_splitfrom = 0xffffffff
best_split_to = [0, 0]
for split_color, split_count in solution.items():
# if split_count <= 1:
# continue
# Tally the other colors
sum = [0, 0, 0]
for col, cnt in solution.items():
if col == split_color:
continue
sum[0] += pal_g[col][0] * cnt * dbllimit
sum[1] += pal_g[col][1] * cnt * dbllimit
sum[2] += pal_g[col][2] * cnt * dbllimit
portion1 = (split_count / 2.0) * dbllimit
portion2 = (split_count - split_count / 2.0) * dbllimit
for a in range(n_colors):
# if(a != split_color && Solution.find(a) != Solution.end()) continue;
firstb = 0
if portion1 == portion2:
firstb = a + 1
for b in range(firstb, n_colors, 1):
if a == b:
continue
# if(b != split_color && Solution.find(b) != Solution.end()) continue;
lumadiff = luma[a] - luma[b]
if lumadiff < 0:
lumadiff = -lumadiff
if lumadiff > 80000:
continue
test = [
gamma_uncorrect(sum[0] + pal_g[a][0] * portion1 + pal_g[b][0] * portion2),
gamma_uncorrect(sum[1] + pal_g[a][1] * portion1 + pal_g[b][1] * portion2),
gamma_uncorrect(sum[2] + pal_g[a][2] * portion1 + pal_g[b][2] * portion2)
]
# Figure out if this split is better than what we had
if ciede2000:
test_lab = LabItem(test[0], test[1], test[2], 1)
penalty = color_compare_ciede2000(inputlab, test_lab)
else:
penalty = color_compare_ccir601(
input_rgb[0], input_rgb[1], input_rgb[2],
test[0] * 255, test[1] * 255, test[2] * 255
)
if penalty < best_penalty:
best_penalty = penalty
best_splitfrom = split_color
best_split_to[0] = a
best_split_to[1] = b
if portion2 == 0:
break
if best_penalty == current_penalty:
break # No better solution was found.
split_count = solution[best_splitfrom]
split1 = split_count / 2.0
split2 = split_count - split1
del solution[best_splitfrom]
if split1 > 0:
if best_split_to[0] in solution.keys():
solution[best_split_to[0]] += split1
else:
solution[best_split_to[0]] = split1
if split2 > 0:
if best_split_to[1] in solution.keys():
solution[best_split_to[1]] += split2
else:
solution[best_split_to[1]] = split2
current_penalty = best_penalty
# Sequence the solution.
r_colors = []
for col, cnt in solution.items():
size = len(r_colors) + cnt
while len(r_colors) < size:
r_colors.append(col)
# Sort the colors according to luminance
# std::sort(result.begin(), result.end(), PaletteCompareLuma);
cols = sorted(r_colors, key=lambda x: luma[x])
return cols
def devise_best_mixing_plan4(srccol, n_colors, limit, luma, d_range, pal):
r_colors = [0] * d_range
src = list(srccol)
lx = 0.09 # Error multiplier
e = [0, 0, 0] # Error accumulator
for c in range(d_range):
# Current temporary value
t = [
int(src[0] + e[0] * lx),
int(src[1] + e[1] * lx),
int(src[2] + e[2] * lx)
]
# Clamp it in the allowed RGB range
if t[0] < 0:
t[0] = 0
elif t[0] > 255:
t[0] = 255
if t[1] < 0:
t[1] = 0
elif t[1] > 255:
t[1] = 255
if t[2] < 0:
t[2] = 0
elif t[2] > 255:
t[2] = 255
# Find the closest color from the palette
least_penalty = 1e99
chosen = c % n_colors
for index in range(n_colors):
pc = list(pal[index])
penalty = color_compare_ccir601(pc[0], pc[1], pc[2], t[0], t[1], t[2])
if penalty < least_penalty:
least_penalty = penalty
chosen = index
# Add it to candidates and update the error
r_colors[c] = chosen
pc = list(pal[chosen])
e[0] += src[0] - pc[0]
e[1] += src[1] - pc[1]
e[2] += src[2] - pc[2]
# Sort the colors according to luminance
# std::sort(result.colors, result.colors + 64, PaletteCompareLuma);
cols = sorted(r_colors, key=lambda x: luma[x])
return cols
def convert_dither(srcim, mode, dither, ciede2000, pal):
w, h = srcim.size
im = Image.new("RGB", (w, h))
src = srcim.load()
dst = im.load()
dmap = dithermaps[dither]
dh = len(dmap)
dw = len(dmap[0])
d_range = dw * dh # dither level range
if 0 <= mode <= 4:
# algorithm 1
mix_plan = {
0: devise_best_mixing_plan,
1: devise_best_mixing_plan,
2: devise_best_mixing_plan,
3: devise_best_mixing_plan_fast,
4: devise_best_mixing_plan_tritone,
}
for y in tqdm(range(h), ascii=True):
for x in range(w):
cols, ratio = mix_plan[mode](src[x, y], mode, d_range, pal)
if mode == 4 and ratio == 4.0:
# Tri-tone or quad-tone dithering
dst[x, y] = pal[cols[(y % 2) * 2 + (x % 2)]]
else:
if (dmap[y % dh][x % dw] / d_range) < ratio:
dst[x, y] = pal[cols[1]]
else:
dst[x, y] = pal[cols[0]]
return im
# get palette length
n_colors = len(pal)
# Luminance for each palette entry,
# to be initialized as soon as the program begins
luma = [(r * 299 + g * 587 + b * 114) for r, g, b in pal]
if mode == 5:
# algorithm 2
for y in tqdm(range(h), ascii=True):
for x in range(w):
cols = devise_best_mixing_plan2(src[x, y], n_colors, luma, pal)
map_value = int(dmap[y % dh][x % dw] * n_colors // d_range)
dst[x, y] = pal[cols[map_value]]
return im
if mode == 6 or mode == 7:
# algorithm 2 gamma correct / algorithm 3
pal_g = []
meta = []
for r, g, b in pal:
gr = gamma_correct(r / 255.0)
gg = gamma_correct(g / 255.0)
gb = gamma_correct(b / 255.0)
pal_g.append([gr, gg, gb])
meta.append(LabItem(r, g, b, 255.0))
mix_plan = {
6: devise_best_mixing_plan2g,
7: devise_best_mixing_plan3
}
for y in tqdm(range(h), ascii=True):
for x in range(w):
cols = mix_plan[mode](src[x, y],
n_colors, n_colors,
luma, pal_g, meta,
ciede2000, pal)
map_value = int(dmap[y % dh][x % dw] * len(cols) // d_range)
dst[x, y] = pal[cols[map_value]]
return im
if mode == 8:
# adobe like pattern dither
for y in tqdm(range(h), ascii=True):
for x in range(w):
cols = devise_best_mixing_plan4(src[x, y],
n_colors, n_colors,
luma, d_range, pal)
map_value = dmap[y % dh][x % dw]
dst[x, y] = pal[cols[map_value]]
return im
def main():
parser = argparse.ArgumentParser(description="Yliluoma ordered dithering 1, 2, 3, 4")
parser.add_argument("-i", "--input", required=True, help="Input png filename")
parser.add_argument("-o", "--output", required=True, help="Output png filename")
parser.add_argument("-p", "--palette", help="Palette file (.png or .gpl)")
parser.add_argument("-d", "--dither", type=int, default=8,
help="Dither type 2,4,8 (2x2,4x4,8x8). default: 8")
parser.add_argument("-m", "--mode", type=int, default=3,
help="job kind 0 - 8. default: 3")
parser.add_argument("-c", "--ciede2000", action="store_true",
help="Enable CIEDE2000 (mode 6 only")
args = parser.parse_args()
if args.mode < 0 or args.mode > 8:
print("Error: Unknown mode = %d" % args.mode)
sys.exit()
if args.dither not in [2, 4, 8]:
print("Error: Unknown dither = %d" % args.dither)
sys.exit()
if args.palette is not None:
# load palette file
# print("Palette file : %s" % args.palette)
p = Palette(args.palette)
palette = p.palette
else:
# print("Palette file is None")
palette = pal
srcim = Image.open(args.input)
im = convert_dither(srcim, args.mode, args.dither, args.ciede2000, palette)
im.save(args.output)
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment