Last active
October 4, 2016 08:55
-
-
Save mietek/2bc72f0155d823e7164c3936c896f7c2 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{- | |
Nordström, B. (1988) “Terminating general recursion” | |
http://dx.doi.org/10.1007/BF01941137 | |
Mu, S-C. (2008) “Well-founded recursion and accessibility” | |
http://www.iis.sinica.edu.tw/~scm/2008/well-founded-recursion-and-accessibility/ | |
-} | |
module Nordstrom1988 where | |
open import Agda.Builtin.Nat using (zero ; suc ; _-_) renaming (Nat to ℕ) | |
data _≤_ : ℕ → ℕ → Set where | |
refl≤ : ∀ {n} → n ≤ n | |
step≤ : ∀ {n m} → n ≤ m → n ≤ suc m | |
_<_ : ℕ → ℕ → Set | |
n < m = suc n ≤ m | |
-- 5. Primitive recursion and mathematical induction | |
-- Natural induction | |
natrec : ∀ {C : ℕ → Set} → | |
(p : ℕ) → C zero → (∀ x → C x → C (suc x)) → | |
C p | |
natrec zero d e = d | |
natrec (suc p) d e = e p (natrec p d e) | |
-- 6. Course-of-values recursion and complete induction | |
-- Course-of-values induction (1) | |
{-# TERMINATING #-} | |
covrec₁ : ∀ {C : ℕ → Set} → | |
(p : ℕ) → C zero → (∀ x → (∀ z → z ≤ x → C z) → C (suc x)) → | |
C p | |
covrec₁ zero d e = d | |
covrec₁ (suc zero) d e = e zero (λ z z≤0 → covrec₁ z d e) | |
covrec₁ (suc (suc p)) d e = e (suc p) (λ z z≤1+p → covrec₁ z d e) | |
-- Course-of-values induction (2) | |
{-# TERMINATING #-} | |
covrec₂ : ∀ {C : ℕ → Set} → | |
(p : ℕ) → (∀ x → (∀ z → z < x → C z) → C x) → | |
C p | |
covrec₂ p e = e p (λ z z<p → covrec₂ z e) | |
-- Complete induction | |
{-# TERMINATING #-} | |
comrec : ∀ {C : ℕ → Set} → | |
(p : ℕ) → (∀ x → (∀ z → z < x → C z) → C x) → | |
C p | |
comrec p e = e p (λ z z<p → comrec z e) | |
-- 9. The set of accessible elements | |
data Acc {A : Set} (_≺_ : A → A → Set) : A → Set where | |
acc : ∀ x → (∀ y → y ≺ x → Acc _≺_ y) → Acc _≺_ x | |
Well-founded : ∀ {A : Set} → (A → A → Set) → Set | |
Well-founded _≺_ = ∀ x → Acc _≺_ x | |
-- Example | |
wf< : Well-founded _<_ | |
wf< n = acc n (access n) | |
where | |
access : ∀ n m → m < n → Acc _<_ m | |
access zero m () | |
access (suc n) .n refl≤ = acc n (access n) | |
access (suc n) m (step≤ m<n) = access n m m<n | |
-- 7. General recursion and well-founded induction | |
unacc : ∀ {A : Set} {_≺_ : A → A → Set} {C : A → Set} → | |
(p : A) → Acc _≺_ p → (∀ x → (∀ z → z ≺ x → C z) → C x) → | |
C p | |
unacc p (acc .p h) e = e p (λ z z≺p → unacc z (h z z≺p) e) | |
wfrec : ∀ {A : Set} {_≺_ : A → A → Set} {C : A → Set} → | |
(p : A) → Well-founded _≺_ → (∀ x → (∀ z → z ≺ x → C z) → C x) → | |
C p | |
wfrec p wf e = unacc p (wf p) e | |
-- Example | |
{-# TERMINATING #-} | |
div? : ℕ → ℕ → ℕ | |
div? zero m = zero | |
div? (suc n) zero = suc n | |
div? (suc n) (suc m) = suc (div? (suc n - suc m) (suc m)) | |
sn-sm<sn : ∀ n m → (n - m) < suc n | |
sn-sm<sn n zero = refl≤ | |
sn-sm<sn zero (suc m) = refl≤ | |
sn-sm<sn (suc n) (suc m) = step≤ (sn-sm<sn n m) | |
div₁ : ℕ → ℕ → ℕ | |
div₁ n m = wfrec n wf< (body m) | |
where | |
body : ∀ m n → (∀ k → k < n → ℕ) → ℕ | |
body m zero rec = zero | |
body zero (suc n) rec = suc n | |
body (suc m) (suc n) rec = suc (rec (suc n - suc m) | |
(sn-sm<sn n m)) | |
div₂ : ℕ → ℕ → ℕ | |
div₂ n m = rec n m (wf< n) | |
where | |
rec : ∀ n → ℕ → Acc _<_ n → ℕ | |
rec zero m (acc .0 h) = zero | |
rec (suc n) zero (acc .(suc n) h) = suc n | |
rec (suc n) (suc m) (acc .(suc n) h) = suc (rec (suc n - suc m) (suc m) | |
(h (suc n - suc m) (sn-sm<sn n m))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment