Last active
May 22, 2016 22:03
-
-
Save mietek/2cb14ceea7c116305bf36ba32551ad3a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module LP where | |
open import Data.Empty using () renaming (⊥ to Empty) | |
open import Data.Product using (∃ ; _×_ ; _,_ ; proj₁ ; proj₂) | |
open import Data.Unit using () renaming (⊤ to Unit ; tt to unit) | |
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) | |
data Cx (X : Set) : Set where | |
∅ : Cx X | |
_,_ : Cx X → X → Cx X | |
data Var (X : Set) : Cx X → X → Set where | |
top : ∀ {Γ A} → Var X (Γ , A) A | |
pop : ∀ {Γ A B} → Var X Γ A → Var X (Γ , B) A | |
x₀ : ∀ {X Γ A} → Var X (Γ , A) A | |
x₀ = top | |
x₁ : ∀ {X Γ A B} → Var X ((Γ , A) , B) A | |
x₁ = pop x₀ | |
x₂ : ∀ {X Γ A B C} → Var X (((Γ , A) , B) , C) A | |
x₂ = pop x₁ | |
module S4 where | |
data Ty : Set where | |
⊥ : Ty | |
_⊃_ : Ty → Ty → Ty | |
_∧_ : Ty → Ty → Ty | |
□_ : Ty → Ty | |
data Tm (Γ Δ : Cx Ty) : Ty → Set where | |
var : ∀ {A} → Var Ty Γ A → Tm Γ Δ A | |
lam : ∀ {A B} → Tm (Γ , A) Δ B → Tm Γ Δ (A ⊃ B) | |
app : ∀ {A B} → Tm Γ Δ (A ⊃ B) → Tm Γ Δ A → Tm Γ Δ B | |
*var : ∀ {A} → Var Ty Δ A → Tm Γ Δ A | |
up : ∀ {A} → Tm ∅ Δ A → Tm Γ Δ (□ A) | |
down : ∀ {A C} → Tm Γ Δ (□ A) → Tm Γ (Δ , A) C → Tm Γ Δ C | |
pair : ∀ {A B} → Tm Γ Δ A → Tm Γ Δ B → Tm Γ Δ (A ∧ B) | |
fst : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ A | |
snd : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ B | |
infixr 5 _⊃_ | |
infixl 10 _∧_ | |
v₀ : ∀ {Γ Δ A} → Tm (Γ , A) Δ A | |
v₀ = var x₀ | |
v₁ : ∀ {Γ Δ A B} → Tm ((Γ , A) , B) Δ A | |
v₁ = var x₁ | |
v₂ : ∀ {Γ Δ A B C} → Tm (((Γ , A) , B) , C) Δ A | |
v₂ = var x₂ | |
*v₀ : ∀ {Γ Δ A} → Tm Γ (Δ , A) A | |
*v₀ = *var x₀ | |
*v₁ : ∀ {Γ Δ A B} → Tm Γ ((Δ , A) , B) A | |
*v₁ = *var x₁ | |
*v₂ : ∀ {Γ Δ A B C} → Tm Γ (((Δ , A) , B) , C) A | |
*v₂ = *var x₂ | |
module Examples where | |
I : ∀ {Γ Δ A} → Tm Γ Δ (A ⊃ A) | |
I = lam v₀ | |
K : ∀ {Γ Δ A B} → Tm Γ Δ (A ⊃ B ⊃ A) | |
K = lam (lam v₁) | |
S : ∀ {Γ Δ A B C} → Tm Γ Δ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) | |
S = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) | |
D : ∀ {Γ Δ A B} → Tm Γ Δ (□ (A ⊃ B) ⊃ □ A ⊃ □ B) | |
D = lam (lam (down v₁ (down v₀ (up (app *v₁ *v₀))))) | |
T : ∀ {Γ Δ A} → Tm Γ Δ (□ A ⊃ A) | |
T = lam (down v₀ *v₀) | |
#4 : ∀ {Γ Δ A} → Tm Γ Δ (□ A ⊃ □ □ A) | |
#4 = lam (down v₀ (up (up *v₀))) | |
E1 : ∀ {Γ Δ A} → Tm Γ Δ (□ (□ A ⊃ A)) | |
E1 = up T | |
E2 : ∀ {Γ Δ A} → Tm Γ Δ (□ (□ A ⊃ □ □ A)) | |
E2 = up #4 | |
E3 : ∀ {Γ Δ A B} → Tm Γ Δ (□ □ (A ⊃ B ⊃ A ∧ B)) | |
E3 = up (up (lam (lam (pair v₁ v₀)))) | |
E4 : ∀ {Γ Δ A B} → Tm Γ Δ (□ (□ A ⊃ □ B ⊃ □ □ (A ∧ B))) | |
E4 = up (lam (lam (down v₁ (down v₀ (up (up (pair *v₁ *v₀))))))) | |
mutual | |
data Ty : Set where | |
⊥ : Ty | |
_⊃_ : Ty → Ty → Ty | |
_∧_ : Ty → Ty → Ty | |
_∴_ : ∀ {Ξ A} → Tm ∅ Ξ A → Ty → Ty | |
data Tm (Γ Δ : Cx Ty) : Ty → Set where | |
var : ∀ {A} → Var Ty Γ A → Tm Γ Δ A | |
lam : ∀ {A B} → Tm (Γ , A) Δ B → Tm Γ Δ (A ⊃ B) | |
app : ∀ {A B} → Tm Γ Δ (A ⊃ B) → Tm Γ Δ A → Tm Γ Δ B | |
*var : ∀ {A} → Var Ty Δ A → Tm Γ Δ A | |
up : ∀ {A} → (t : Tm ∅ Δ A) → Tm Γ Δ (t ∴ A) | |
down : ∀ {Ξ A C} {t : Tm ∅ Ξ A} → Tm Γ Δ (t ∴ A) → Tm Γ (Δ , A) C → Tm Γ Δ C | |
pair : ∀ {A B} → Tm Γ Δ A → Tm Γ Δ B → Tm Γ Δ (A ∧ B) | |
fst : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ A | |
snd : ∀ {A B} → Tm Γ Δ (A ∧ B) → Tm Γ Δ B | |
syntax lam t = ƛ t | |
syntax app t₁ t₂ = t₁ ∙ t₂ | |
syntax up t = ⇑ t | |
syntax down t₁ t₂ = ⇓⟨ t₁ ∣ t₂ ⟩ | |
syntax pair t₁ t₂ = p⟨ t₁ , t₂ ⟩ | |
syntax fst t = π₀ t | |
syntax snd t = π₁ t | |
infixr 5 _⊃_ | |
infixl 10 _∧_ | |
infixl 10 app | |
infixr 15 _∴_ | |
v₀ : ∀ {Γ Δ A} → Tm (Γ , A) Δ A | |
v₀ = var x₀ | |
v₁ : ∀ {Γ Δ A B} → Tm ((Γ , A) , B) Δ A | |
v₁ = var x₁ | |
v₂ : ∀ {Γ Δ A B C} → Tm (((Γ , A) , B) , C) Δ A | |
v₂ = var x₂ | |
*v₀ : ∀ {Γ Δ A} → Tm Γ (Δ , A) A | |
*v₀ = *var x₀ | |
*v₁ : ∀ {Γ Δ A B} → Tm Γ ((Δ , A) , B) A | |
*v₁ = *var x₁ | |
*v₂ : ∀ {Γ Δ A B C} → Tm Γ (((Δ , A) , B) , C) A | |
*v₂ = *var x₂ | |
[vᵢ]_ : Ty → Ty | |
[vᵢ] A = _∴_ {Ξ = (∅ , A)} *v₀ A | |
module Examples where | |
I : ∀ {Γ Δ A} → Tm Γ Δ (A ⊃ A) | |
I = lam v₀ | |
K : ∀ {Γ Δ A B} → Tm Γ Δ (A ⊃ B ⊃ A) | |
K = lam (lam v₁) | |
S : ∀ {Γ Δ A B C} → Tm Γ Δ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) | |
S = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) | |
D : ∀ {Γ Δ A B} → Tm Γ Δ ([vᵢ] (A ⊃ B) ⊃ [vᵢ] A ⊃ app *v₁ *v₀ ∴ B) | |
D = lam (lam (down v₁ (down v₀ (up (app *v₁ *v₀))))) | |
T : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ A) | |
T = lam (down v₀ *v₀) | |
#4 : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ up *v₀ ∴ *v₀ ∴ A) | |
#4 = lam (down v₀ (up (up *v₀))) | |
E1 : ∀ {Γ Δ A} → Tm Γ Δ (T ∴ ([vᵢ] A ⊃ A)) | |
E1 = up T | |
E2 : ∀ {Γ Δ A} → Tm Γ Δ (#4 ∴ ([vᵢ] A ⊃ up *v₀ ∴ *v₀ ∴ A)) | |
E2 = up #4 | |
E3 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (up (lam (lam (pair v₁ v₀))) ∴ lam (lam (pair v₁ v₀)) ∴ (A ⊃ B ⊃ A ∧ B)) | |
E3 = up (up (lam (lam (pair v₁ v₀)))) | |
E4 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (lam (lam (down v₁ (down v₀ (up (up (pair *v₁ *v₀)))))) ∴ | |
([vᵢ] A ⊃ [vᵢ] B ⊃ up (pair *v₁ *v₀) ∴ pair *v₁ *v₀ ∴ (A ∧ B))) | |
E4 = up (lam (lam (down v₁ (down v₀ (up (up (pair *v₁ *v₀))))))) | |
module AltArtemovNotation where | |
I : ∀ {Γ Δ A} → Tm Γ Δ (A ⊃ A) | |
I = ƛ v₀ | |
K : ∀ {Γ Δ A B} → Tm Γ Δ (A ⊃ B ⊃ A) | |
K = ƛ ƛ v₁ | |
S : ∀ {Γ Δ A B C} → Tm Γ Δ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) | |
S = ƛ ƛ ƛ ((v₂ ∙ v₀) ∙ (v₁ ∙ v₀)) | |
D : ∀ {Γ Δ A B} → Tm Γ Δ ([vᵢ] (A ⊃ B) ⊃ [vᵢ] A ⊃ (*v₁ ∙ *v₀) ∴ B) | |
D = ƛ ƛ ⇓⟨ v₁ ∣ ⇓⟨ v₀ ∣ ⇑ (*v₁ ∙ *v₀) ⟩ ⟩ | |
T : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ A) | |
T = ƛ ⇓⟨ v₀ ∣ *v₀ ⟩ | |
#4 : ∀ {Γ Δ A} → Tm Γ Δ ([vᵢ] A ⊃ ⇑ *v₀ ∴ *v₀ ∴ A) | |
#4 = ƛ ⇓⟨ v₀ ∣ ⇑ ⇑ *v₀ ⟩ | |
E1 : ∀ {Γ Δ A} → Tm Γ Δ (T ∴ ([vᵢ] A ⊃ A)) | |
E1 = ⇑ T | |
E2 : ∀ {Γ Δ A} → Tm Γ Δ (#4 ∴ ([vᵢ] A ⊃ ⇑ *v₀ ∴ *v₀ ∴ A)) | |
E2 = ⇑ #4 | |
E3 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (⇑ ƛ ƛ p⟨ v₁ , v₀ ⟩ ∴ ƛ ƛ p⟨ v₁ , v₀ ⟩ ∴ (A ⊃ B ⊃ A ∧ B)) | |
E3 = ⇑ ⇑ ƛ ƛ p⟨ v₁ , v₀ ⟩ | |
E4 : ∀ {Γ Δ A B} → | |
Tm Γ Δ (ƛ ƛ ⇓⟨ v₁ ∣ ⇓⟨ v₀ ∣ ⇑ ⇑ p⟨ *v₁ , *v₀ ⟩ ⟩ ⟩ ∴ | |
([vᵢ] A ⊃ [vᵢ] B ⊃ ⇑ p⟨ *v₁ , *v₀ ⟩ ∴ p⟨ *v₁ , *v₀ ⟩ ∴ (A ∧ B))) | |
E4 = ⇑ ƛ ƛ ⇓⟨ v₁ ∣ ⇓⟨ v₀ ∣ ⇑ ⇑ p⟨ *v₁ , *v₀ ⟩ ⟩ ⟩ | |
module ForgetfulProjection where | |
⌊_⌋ᴬ : Ty → S4.Ty | |
⌊ ⊥ ⌋ᴬ = S4.⊥ | |
⌊ A ⊃ B ⌋ᴬ = ⌊ A ⌋ᴬ S4.⊃ ⌊ B ⌋ᴬ | |
⌊ A ∧ B ⌋ᴬ = ⌊ A ⌋ᴬ S4.∧ ⌊ B ⌋ᴬ | |
⌊ t ∴ A ⌋ᴬ = S4.□ ⌊ A ⌋ᴬ | |
⌊_⌋ᴳ : Cx Ty → Cx S4.Ty | |
⌊ ∅ ⌋ᴳ = ∅ | |
⌊ (Γ , A) ⌋ᴳ = (⌊ Γ ⌋ᴳ , ⌊ A ⌋ᴬ) | |
⌊_⌋ˣ : ∀ {Γ A} → Var Ty Γ A → Var S4.Ty ⌊ Γ ⌋ᴳ ⌊ A ⌋ᴬ | |
⌊ top ⌋ˣ = top | |
⌊ pop x ⌋ˣ = pop ⌊ x ⌋ˣ | |
⌊_⌋ : ∀ {Γ Δ A} → Tm Γ Δ A → S4.Tm ⌊ Γ ⌋ᴳ ⌊ Δ ⌋ᴳ ⌊ A ⌋ᴬ | |
⌊ var x ⌋ = S4.var ⌊ x ⌋ˣ | |
⌊ lam t ⌋ = S4.lam ⌊ t ⌋ | |
⌊ app t₁ t₂ ⌋ = S4.app ⌊ t₁ ⌋ ⌊ t₂ ⌋ | |
⌊ *var x ⌋ = S4.*var ⌊ x ⌋ˣ | |
⌊ up t ⌋ = S4.up ⌊ t ⌋ | |
⌊ down t₁ t₂ ⌋ = S4.down ⌊ t₁ ⌋ ⌊ t₂ ⌋ | |
⌊ pair t₁ t₂ ⌋ = S4.pair ⌊ t₁ ⌋ ⌊ t₂ ⌋ | |
⌊ fst t ⌋ = S4.fst ⌊ t ⌋ | |
⌊ snd t ⌋ = S4.snd ⌊ t ⌋ | |
mutual | |
⟦_⟧ᴬ : Ty → Set | |
⟦ ⊥ ⟧ᴬ = Empty | |
⟦ A ⊃ B ⟧ᴬ = ⟦ A ⟧ᴬ → ⟦ B ⟧ᴬ | |
⟦ A ∧ B ⟧ᴬ = ⟦ A ⟧ᴬ × ⟦ B ⟧ᴬ | |
⟦ t ∴ A ⟧ᴬ = ∃ (λ t′ → t ≡ t′) × ⟦ A ⟧ᴬ | |
⟦_⟧ᴳ : Cx Ty → Set | |
⟦ ∅ ⟧ᴳ = Unit | |
⟦ (Γ , A) ⟧ᴳ = ⟦ Γ ⟧ᴳ × ⟦ A ⟧ᴬ | |
⟦_⟧ˣ : ∀ {Γ A} → Var Ty Γ A → ⟦ Γ ⟧ᴳ → ⟦ A ⟧ᴬ | |
⟦ top ⟧ˣ (γ , a) = a | |
⟦ pop x ⟧ˣ (γ , b) = ⟦ x ⟧ˣ γ | |
⟦_⟧ : ∀ {Γ Δ A} → Tm Γ Δ A → ⟦ Γ ⟧ᴳ → ⟦ Δ ⟧ᴳ → ⟦ A ⟧ᴬ | |
⟦ var x ⟧ γ δ = ⟦ x ⟧ˣ γ | |
⟦ lam t ⟧ γ δ = λ a → ⟦ t ⟧ (γ , a) δ | |
⟦ app t₁ t₂ ⟧ γ δ = (⟦ t₁ ⟧ γ δ) (⟦ t₂ ⟧ γ δ) | |
⟦ *var x ⟧ γ δ = ⟦ x ⟧ˣ δ | |
⟦ up t ⟧ γ δ = ((t , refl) , ⟦ t ⟧ unit δ) | |
⟦ down t₁ t₂ ⟧ γ δ with ⟦ t₁ ⟧ γ δ | |
… | ((t , refl) , *a) = ⟦ t₂ ⟧ γ (δ , *a) | |
⟦ pair t₁ t₂ ⟧ γ δ = (⟦ t₁ ⟧ γ δ , ⟦ t₂ ⟧ γ δ) | |
⟦ fst t ⟧ γ δ = proj₁ (⟦ t ⟧ γ δ) | |
⟦ snd t ⟧ γ δ = proj₂ (⟦ t ⟧ γ δ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment