Created
October 23, 2016 11:26
-
-
Save mietek/bd4771de1b1518837fae7c763128d0ef to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module BasicIPC.Syntax.GentzenNormalForm3 where | |
open import BasicIPC.Syntax.GentzenNormalForm public | |
data Re {Γ} : ∀ {A} → Γ ⊢ A → Γ ⊢ A → Set where | |
conglamʳᵉ : ∀ {A B} {t t′ : Γ , A ⊢ B} → | |
Re t t′ → Re (lam t) (lam t′) | |
congappʳᵉ : ∀ {A B} {t t′ : Γ ⊢ A ▻ B} {u u′ : Γ ⊢ A} → | |
Re t t′ → Re u u′ → Re (app t u) (app t′ u′) | |
congpairʳᵉ : ∀ {A B} {t t′ : Γ ⊢ A} {u u′ : Γ ⊢ B} → | |
Re t t′ → Re u u′ → Re (pair t u) (pair t′ u′) | |
congfstʳᵉ : ∀ {A B} {t t′ : Γ ⊢ A ∧ B} → | |
Re t t′ → Re (fst t) (fst t′) | |
congsndʳᵉ : ∀ {A B} {t t′ : Γ ⊢ A ∧ B} → | |
Re t t′ → Re (snd t) (snd t′) | |
beta▻ʳᵉ : ∀ {A B} {t : Γ , A ⊢ B} {u : Γ ⊢ A} → | |
Re (app (lam t) u) ([ top ≔ u ] t) | |
beta∧₁ʳᵉ : ∀ {A B} {t : Γ ⊢ A} {u : Γ ⊢ B} → | |
Re (fst (pair t u)) t | |
beta∧₂ʳᵉ : ∀ {A B} {t : Γ ⊢ A} {u : Γ ⊢ B} → | |
Re (snd (pair t u)) u | |
data Nf {Γ} : ∀ {A} → Γ ⊢ A → Set where | |
lamⁿᶠ : ∀ {A B} {t : Γ , A ⊢ B} → | |
Nf t → Nf (lam t) | |
pairⁿᶠ : ∀ {A B} {t : Γ ⊢ A} {u : Γ ⊢ B} → | |
Nf t → Nf u → Nf (pair t u) | |
unitⁿᶠ : Nf unit | |
data Ch {Γ A} (t : Γ ⊢ A) : Γ ⊢ A → Set where | |
done : Nf t → Ch t t | |
step : ∀ {t′ t″ : Γ ⊢ A} {{_ : t ≢ t″}} → | |
Ch t t′ → Re t′ t″ → Ch t t″ | |
lamᶜʰ : ∀ {Γ A B} {t : Γ , A ⊢ B} → Nf t → Ch (lam t) (lam t) | |
lamᶜʰ ν = done (lamⁿᶠ ν) | |
unlamᶜʰ : ∀ {Γ A B} {t : Γ , A ⊢ B} → Ch (lam t) (lam t) → Nf t | |
unlamᶜʰ (done (lamⁿᶠ ν)) = ν | |
unlamᶜʰ (step {{s≢s′}} χ ρ) = refl ↯ s≢s′ | |
pairᶜʰ : ∀ {Γ A B} {t : Γ ⊢ A} {u : Γ ⊢ B} → Nf t → Nf u → Ch (pair t u) (pair t u) | |
pairᶜʰ νₜ νᵤ = done (pairⁿᶠ νₜ νᵤ) | |
unpairᶜʰ₁ : ∀ {Γ A B} {t : Γ ⊢ A} {u : Γ ⊢ B} → Ch (pair t u) (pair t u) → Nf t | |
unpairᶜʰ₁ (done (pairⁿᶠ νₜ νᵤ)) = νₜ | |
unpairᶜʰ₁ (step {{s≢s′}} χ ρ) = refl ↯ s≢s′ | |
unpairᶜʰ₂ : ∀ {Γ A B} {t : Γ ⊢ A} {u : Γ ⊢ B} → Ch (pair t u) (pair t u) → Nf u | |
unpairᶜʰ₂ (done (pairⁿᶠ νₜ νᵤ)) = νᵤ | |
unpairᶜʰ₂ (step {{s≢s′}} χ ρ) = refl ↯ s≢s′ | |
record Sh {Γ A} (t : Γ ⊢ A) : Set where | |
constructor sh | |
field | |
{t′} : Γ ⊢ A | |
ch : Ch t t′ | |
open Sh public | |
lamˢʰ : ∀ {Γ A B} {t : Γ , A ⊢ B} → Sh t → Sh (lam t) | |
lamˢʰ (sh (done ν)) = sh (done (lamⁿᶠ ν)) | |
lamˢʰ (sh (step {{t≢t′}} χ ρ)) = sh {!!} | |
unlamˢʰ : ∀ {Γ A B} {t : Γ , A ⊢ B} → Sh (lam t) → Sh t | |
unlamˢʰ σ = {!!} | |
sh? : ∀ {Γ A} → (t : Γ ⊢ A) → Dec (Sh t) | |
sh? (var i) = {!!} | |
sh? (lam t) = mapDec {!!} {!!} (sh? t) | |
sh? (app t u) = {!!} | |
sh? (pair t u) = {!!} | |
sh? (fst t) = {!!} | |
sh? (snd t) = {!!} | |
sh? unit = yes (sh (done unitⁿᶠ)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment