Created
September 13, 2014 00:38
-
-
Save migimunz/3eb99184fb9d3b8ac5a1 to your computer and use it in GitHub Desktop.
Solving fizzbuzz with genetic algorithms - somewhat correct!
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The best result I got so far is 72.9% , which is | |
# close enough for most real word uses. | |
Defs = { | |
fizz: 0, | |
buzz: 1, | |
fizzbuzz: 2, | |
neither: 3 | |
} | |
GENOME_LENGTH = 20 | |
class TrueClass | |
def to_i | |
1 | |
end | |
end | |
class FalseClass | |
def to_i | |
0 | |
end | |
end | |
class Array | |
def swap(i, j) | |
self[j], self[i] = self[i], self[j] | |
self | |
end | |
end | |
def random_genome | |
Array.new(GENOME_LENGTH).map { |e| Defs.values.sample } | |
end | |
def fitness(genome) | |
genome.each_with_index.map do |e, i| | |
n = i + 1 | |
case | |
when n % 5 == 0 && n % 3 == 0 | |
(e == Defs[:fizzbuzz]).to_i | |
when n % 3 == 0 | |
(e == Defs[:fizz]).to_i | |
when n % 5 == 0 | |
(e == Defs[:buzz]).to_i | |
else | |
(e == Defs[:neither]).to_i | |
end | |
end.reduce(:+) / genome.length.to_f | |
end | |
def select(population, rate = 0.50) | |
n = (rate * population.size).round | |
# Stupid, truncation based selection. | |
raise RuntimeError, "U dun fucked up" if n > population.size | |
population = population.sort { |a, b| fitness(b) <=> fitness(a) }.slice(0, n) | |
puts "Current top fitness: #{fitness(population[0])}" | |
# screw it up a bit, just to avoid local optimum | |
(n/10).times { population.swap((rand * population.size - 1), (rand * population.size - 1)) } | |
population | |
end | |
def single_point_crossover(a, b) | |
n = ((a.size-1) * rand).round | |
[a.slice(0, n+1) + b.slice(n, b.size), | |
b.slice(0, n+1) + a.slice(n, a.size)] | |
end | |
def crossover(selected, size) | |
children = [] | |
while children.size != size | |
children.concat(single_point_crossover(selected.sample, selected.sample)) | |
end | |
children | |
end | |
def mutation(population, rate = 0.01) | |
population.map do |genome| | |
genome.map do |e| | |
if rand < rate | |
Defs.values.sample | |
else | |
e | |
end | |
end | |
end | |
end | |
def find_solution(population) | |
population.find { |genome| fitness(genome) == 1 } | |
end | |
def evolve_fizz_buzz(generation_count, population_count, crossover_rate, mutation_rate) | |
population = Array.new(population_count).map { |e| random_genome } | |
generation_count.times do |gen| | |
puts "Generation #{gen}" | |
population = mutation(crossover(select(population, crossover_rate), population_count), mutation_rate) | |
solution = find_solution(population) | |
return solution if solution | |
end | |
nil | |
end | |
puts evolve_fizz_buzz(1000, 1000, 0.2, 0.01) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment