Created
March 20, 2015 09:32
-
-
Save miguelmalvarez/31122eb9e4c0af8adeca to your computer and use it in GitHub Desktop.
Represent Reuters21578
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from nltk import word_tokenize | |
from nltk.corpus import reuters | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from nltk.stem.porter import PorterStemmer | |
import re | |
from nltk.corpus import stopwords | |
cachedStopWords = stopwords.words("english") | |
def tokenize(text): | |
min_length = 3 | |
words = map(lambda word: word.lower(), word_tokenize(text)); | |
words = [word for word in words if word not in cachedStopWords] | |
tokens =(list(map(lambda token: PorterStemmer().stem(token), words))); | |
p = re.compile('[a-zA-Z]+'); | |
filtered_tokens = list(filter(lambda token: p.match(token) and len(token)>=min_length, tokens)); | |
return filtered_tokens | |
# Return the representer, without transforming | |
def tf_idf(docs): | |
tfidf = TfidfVectorizer(tokenizer=tokenize, min_df=3, max_df=0.90, max_features=1000, use_idf=True, sublinear_tf=True); | |
tfidf.fit(docs); | |
return tfidf; | |
def feature_values(doc, representer): | |
doc_representation = representer.transform([doc]) | |
features = representer.get_feature_names() | |
return [(features[index], doc_representation[0, index]) for index in doc_representation.nonzero()[1]] | |
def collection_stats(): | |
# List of documents | |
documents = reuters.fileids() | |
print(str(len(documents)) + " documents"); | |
train_docs = list(filter(lambda doc: doc.startswith("train"), documents)); | |
print(str(len(train_docs)) + " total train documents"); | |
test_docs = list(filter(lambda doc: doc.startswith("test"), documents)); | |
print(str(len(test_docs)) + " total test documents"); | |
# List of categories | |
categories = reuters.categories(); | |
print(str(len(categories)) + " categories"); | |
# Documents in a category | |
category_docs = reuters.fileids("acq"); | |
# Words for a document | |
document_id = category_docs[0] | |
document_words = reuters.words(category_docs[0]); | |
print(document_words); | |
# Raw document | |
print(reuters.raw(document_id)); | |
def main(): | |
train_docs = [] | |
test_docs = [] | |
for doc_id in reuters.fileids(): | |
if doc_id.startswith("train"): | |
train_docs.append(reuters.raw(doc_id)) | |
else: | |
test_docs.append(reuters.raw(doc_id)) | |
representer = tf_idf(train_docs); | |
for doc in test_docs: | |
print(feature_values(doc, representer)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment