Created
February 9, 2015 18:02
-
-
Save miguelmalvarez/a5ccc66310748802fb01 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.metrics import accuracy_score | |
from sklearn import cross_validation | |
import pandas as pd | |
import logging | |
import time | |
import datetime | |
import numpy as np | |
def log_info(message): | |
ts = time.time() | |
logging.info(message + " " + datetime.datetime | |
.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')) | |
def init_logging(log_file_path): | |
logging.basicConfig(format='%(message)s', level=logging.INFO, filename=log_file_path) | |
def xval(classifier, train_instances, judgements): | |
log_info('Crossvalidation started... ') | |
cv = cross_validation.StratifiedKFold(np.array(judgements), n_folds=5) | |
avg_quality = 0.0 | |
for train_index, test_index in cv: | |
train_cv, test_cv = train_instances[train_index], train_instances[test_index] | |
train_judgements_cv, test_judgements_cv = judgements[train_index], judgements[test_index] | |
decisions_cv = classifier.fit(train_cv, train_judgements_cv).predict(test_cv) | |
quality = accuracy_score(decisions_cv, test_judgements_cv) | |
avg_quality += quality | |
log_info('Quality of split... ' + str(quality)) | |
quality = avg_quality/len(cv) | |
log_info('Estimated quality of model... ' + str(quality)) | |
def main(): | |
init_logging('./history.log') | |
log_info('============== \nReading training data... ') | |
train_data = pd.read_csv('data/train.csv', header=0).values | |
#the first column of the training set will be the judgements | |
judgements = np.array([str(int (x[0])) for x in train_data]) | |
train_instances = np.array([x[1:] for x in train_data]) | |
classifier = RandomForestClassifier(n_estimators=100) | |
log_info('Cross-validation... ') | |
quality = xval(classifier, train_instances, judgements) | |
log_info('Building model... ') | |
classifier.fit(train_instances, judgements) | |
log_info('Reading testing data... ') | |
test_data = pd.read_csv('data/test.csv', header=0).values | |
decisions = classifier.predict(test_data) | |
log_info('Output results... ') | |
decisions_formatted = np.append(np.array('Label'), decisions) | |
ids = ['ImageId'] + list(range(1, len(decisions_formatted))) | |
output = np.column_stack((ids, decisions_formatted)) | |
pd.DataFrame(output).to_csv('data/results.csv', header=False, index=False) | |
if __name__=='__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment