Last active
January 10, 2024 14:52
-
-
Save mihaiconstantin/475e1d79978e4103dbbffbece5b46721 to your computer and use it in GitHub Desktop.
Adding phantom latent variables in SEM in `lavaan`.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Phantom latent variables. | |
# Load the packages. | |
library(lavaan) | |
library(semPlot) | |
# Load data. | |
data(HolzingerSwineford1939) | |
# Store the data. | |
data <- HolzingerSwineford1939[, c(7:12)] | |
# Specify the model. | |
model_1 <- " | |
# Define latent variables with observed indicators. | |
eta1 =~ x1 + x2 + x3 | |
eta2 =~ x4 + x5 + x6 | |
# Define latent covariance. | |
eta1 ~~ eta2 | |
" | |
# Fit the model. | |
fit_1 <- sem(model_1, data = data) | |
# Display the results. | |
summary(fit_1) | |
# Plot the model. | |
semPlot::semPaths(fit_1, what = "path", whatLabels = "est", style = "ram", layout = "spring") | |
# Specify the model. | |
model_2 <- " | |
# Define latent variables with observed indicators. | |
eta1 =~ x1 + x2 + x3 | |
eta2 =~ x4 + x5 + x6 | |
# Define latent covariance. | |
eta1 ~~ eta2 | |
# Define a phantom latent variable. | |
# See: https://search.r-project.org/CRAN/refmans/lavaan/html/model.syntax.html | |
phantom =~ 0 | |
# Fix the variance and any covariances of the phantom latent variable. | |
phantom ~~ 0 * phantom | |
phantom ~~ 0 * eta2 | |
# Define a structural regression path involving the phantom latent variable. | |
eta1 ~ 0.5 * phantom | |
" | |
# Fit the model. | |
fit_2 <- sem(model_2, data = data) | |
# Display the results. | |
summary(fit_2) | |
# Plot the model. | |
semPlot::semPaths(fit_2, what = "path", whatLabels = "est", style = "ram", layout = "spring") | |
# Add fake variables to the data, with random values. | |
data$fake_x7 <- rnorm(nrow(data)) | |
data$fake_x8 <- rnorm(nrow(data)) | |
data$fake_x9 <- rnorm(nrow(data)) | |
# Specify the model. | |
model_3 <- " | |
# Define latent variables with observed indicators. | |
eta1 =~ x1 + x2 + x3 | |
eta2 =~ x4 + x5 + x6 | |
# Define latent covariance. | |
eta1 ~~ eta2 | |
# Define a phantom latent variable based on fake observed variables. | |
phantom =~ 0 * fake_x7 + 0 * fake_x8 + 0 * fake_x9 | |
# Fix the variance and any covariances of the phantom latent variable. | |
phantom ~~ 0 * phantom | |
phantom ~~ 0 * eta2 | |
# Fix the residuals of the fake observed variables. | |
fake_x7 ~~ 1 * fake_x7 | |
fake_x8 ~~ 1 * fake_x8 | |
fake_x9 ~~ 1 * fake_x9 | |
# Define a structural regression path. | |
eta1 ~ 0.5 * phantom | |
" | |
# Fit the model. | |
fit_3 <- sem(model_3, data = data) | |
# Display the results. | |
summary(fit_3) | |
# Plot the model. | |
semPlot::semPaths(fit_3, what = "path", whatLabels = "est", style = "ram", layout = "spring") | |
# Note. The fake observed variables are not per se used as "known" pieces of | |
# information. We added them just to define the phantom latent variable with a | |
# full-fledged measurement model. You can see that the number of free model | |
# parameters is the same as in `model_2`. However, the degrees of freedom are | |
# different because `lavaan` does not know that the fake variables are just | |
# specification trickery. Nevertheless, you will see that the estimated values | |
# for the model parameters are identical. | |
# Display all model results. | |
summary(fit_1) | |
summary(fit_2) | |
summary(fit_3) | |
# Plot all models. | |
# Set the layout. | |
layout(matrix(c(1, 2, 3), nrow = 1, ncol = 3)) | |
# Plot model 1. | |
semPaths(fit_1, what = "path", whatLabels = "est", style = "ram", layout = "tree") | |
title("Model 1") | |
# Plot model 2. | |
semPaths(fit_2, what = "path", whatLabels = "est", style = "ram", layout = "tree") | |
title("Model 2") | |
# Plot model 3. | |
semPaths(fit_3, what = "path", whatLabels = "est", style = "ram", layout = "tree") | |
title("Model 3") | |
# Reset the layout. | |
layout(1:1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment