Skip to content

Instantly share code, notes, and snippets.

@mihirkhandekar
Created April 7, 2020 12:21
Show Gist options
  • Save mihirkhandekar/57d615733c96926839829125b80a9dcb to your computer and use it in GitHub Desktop.
Save mihirkhandekar/57d615733c96926839829125b80a9dcb to your computer and use it in GitHub Desktop.
def classification_nn_model(input_features):
initializer = tf.compat.v1.keras.initializers.random_normal(0.0, 0.01)
model = tf.keras.Sequential(
[
keraslayers.Dense(
512,
activation = tf.nn.tanh,
input_shape = (input_features,),
kernel_initializer = initializer,
bias_initializer = 'zeros'
),
keraslayers.Dense(
128,
activation=tf.nn.tanh,
kernel_initializer = initializer,
bias_initializer='zeros'
),
keraslayers.Dense(
32,
activation=tf.nn.tanh,
kernel_initializer = initializer,
bias_initializer='zeros'
),
keraslayers.Dense(
100,
kernel_initializer = initializer,
bias_initializer='zeros'
)
]
)
return model
# input_features should be changed according to the model
input_features = 600
cmodelA = classification_nn_model(input_features)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment