Skip to content

Instantly share code, notes, and snippets.

@mike-lawrence
Created November 30, 2011 16:55
Show Gist options
  • Save mike-lawrence/1409791 to your computer and use it in GitHub Desktop.
Save mike-lawrence/1409791 to your computer and use it in GitHub Desktop.
raw scores vs difference scores
#see file `dput_of_a.R` below this file for the data object `a`
#load helpful libraries
library(MASS)
library(plyr)
library(reshape)
library(lme4)
########
# Method 1: Model and sample, then collapse
########
#fit a model to the raw data & include cue
fit1 = lmer(
data = a
, formula = value ~ (1|id) + cue*s1*s2*r1*r2
)
#get the model's estimates for the means & covariances
f1 = fixef(fit1)
v1 = vcov(fit1)
#sample the model
set.seed(1)
samples1 = mvrnorm(1e3,f1,v1)
#create a model matrix for converting the samples to condition values
m1 = model.matrix(
object = terms(value~cue*s1*s2*r1*r2)
, data = expand.grid(
cue = unique(a$cue)
, s1 = unique(a$s1)
, s2 = unique(a$s2)
, r1 = unique(a$r1)
, r2 = unique(a$r2)
, value = 0
)
)
#convert the samples to condition values
mat1 = matrix(NA,nrow=2*2*2*2*3,ncol=1e3)
for(i in 1:1e3){
mat1[,i] <- m1%*%samples1[i,]
}
#reshape the samples and add condition labels
data1 = expand.grid(
cue = unique(a$cue)
, s1 = unique(a$s1)
, s2 = unique(a$s2)
, r1 = unique(a$r1)
, r2 = unique(a$r2)
)
data1 = cbind(data1,as.data.frame(mat1))
data1 = melt(
data = data1
, id.vars = c('cue','s1','s2','r1','r2')
, variable_name = 'iteration'
)
#collapse cue to a difference score within each sample
cuing1 = ddply(
.data = data1
, .variables = .(iteration,s1,s2,r1,r2)
, .fun = function(x){
data.frame(
value = x$value[x$cue=='uncued']-x$value[x$cue=='cued']
)
}
, .progress = 'text'
)
#compute 95% CI's for cuing
cuing1_stats = ddply(
.data = cuing1
, .variables = .(s1,s2,r1,r2)
, .fun = function(x){
data.frame(
lo = quantile(x$value,.025)
, hi = quantile(x$value,.975)
)
}
)
cuing1_stats$sig = (cuing1_stats$lo>0)|(cuing1_stats$hi<0)
mean(cuing1_stats$sig)
########
# Method 2: Collapse, then Model and sample
########
#collapse cue to a difference score
b = ddply(
.data = a
, .variables = .(id,s1,s2,r1,r2)
, .fun = function(x){
data.frame(
value = x$value[x$cue=='cued']-x$value[x$cue=='uncued']
)
}
)
#fit a model to the collapsed data
fit2 = lmer(
data = b
, formula = value ~ (1|id) + s1*s2*r1*r2
)
#get the model's estimates for the means & covariances
f2 = fixef(fit2)
v2 = vcov(fit2)
#sample the model
set.seed(1)
samples2 = mvrnorm(1e3,f2,v2)
#create a model matrix for converting the samples to condition values
m2 = model.matrix(
object = terms(value~s1*s2*r1*r2)
, data = expand.grid(
s1 = unique(a$s1)
, s2 = unique(a$s2)
, r1 = unique(a$r1)
, r2 = unique(a$r2)
, value = 0
)
)
#convert the samples to condition values
mat2 = matrix(NA,nrow=2*2*2*3,ncol=1e3)
for(i in 1:1e3){
mat2[,i] <- m2%*%samples2[i,]
}
#reshape the samples and add condition labels
data2 = expand.grid(
s1 = unique(a$s1)
, s2 = unique(a$s2)
, r1 = unique(a$r1)
, r2 = unique(a$r2)
)
data2 = cbind(data2,as.data.frame(mat2))
data2 = melt(
data = data2
, id.vars = c('s1','s2','r1','r2')
, variable_name = 'iteration'
)
#compute 95% CI's for cuing
cuing2_stats = ddply(
.data = data2
, .variables = .(s1,s2,r1,r2)
, .fun = function(x){
data.frame(
lo = quantile(x$value,.025)
, hi = quantile(x$value,.975)
)
}
)
cuing2_stats$sig = (cuing2_stats$lo>0)|(cuing2_stats$hi<0)
mean(cuing2_stats$sig)
a = structure(list(id = structure(c(11L, 3L, 1L, 17L, 15L, 16L, 7L,
4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L,
15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L,
3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L,
9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L,
10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L,
2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L,
7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L,
17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L,
11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L,
8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L,
13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L,
5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L,
16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L,
1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L,
6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L,
14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L,
12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L,
4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L,
15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L,
3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L,
9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L,
10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L,
2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L,
7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L,
17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L,
11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L,
8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L,
13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L,
5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L,
16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L,
1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L,
6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L,
14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L,
12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L,
4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L,
15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L,
3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L,
9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L,
10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L,
2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L,
7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L,
17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L,
11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L,
8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L,
13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L,
5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L,
16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L,
1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L,
6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L,
14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L,
12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L,
4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L,
15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L,
3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L,
9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L, 2L, 12L, 13L,
10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L, 7L, 4L, 5L,
2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L, 11L, 3L, 1L, 17L, 15L, 16L,
7L, 4L, 5L, 2L, 12L, 13L, 10L, 14L, 8L, 9L, 6L), .Label = c("AA",
"AL", "CS", "EM", "IG", "JS", "JV", "LR", "MF", "NS", "PC", "SC",
"SH", "SM", "SS", "TF", "VA"), class = "factor"), block = c(1,
5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 3, 6, 5, 2, 4,
3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 6, 2, 4, 3, 1, 6, 5, 2, 4,
3, 1, 6, 5, 2, 4, 3, 1, 2, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4,
3, 1, 6, 5, 5, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2,
4, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 1, 5, 3, 4,
6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 3, 6, 5, 2, 4, 3, 1, 6,
5, 2, 4, 3, 1, 6, 5, 2, 4, 6, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6,
5, 2, 4, 3, 1, 2, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6,
5, 5, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 4, 1, 2,
5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 1, 5, 3, 4, 6, 1, 2,
5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 3, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4,
3, 1, 6, 5, 2, 4, 6, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4,
3, 1, 2, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 5, 4,
6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 4, 1, 2, 5, 3, 4,
6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 1, 5, 3, 4, 6, 1, 2, 5, 3, 4,
6, 1, 2, 5, 3, 4, 6, 3, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6,
5, 2, 4, 6, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 2,
3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 5, 4, 6, 1, 2,
5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 4, 1, 2, 5, 3, 4, 6, 1, 2,
5, 3, 4, 6, 1, 2, 5, 3, 1, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2,
5, 3, 4, 6, 3, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4,
6, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 2, 3, 1, 6,
5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 5, 4, 6, 1, 2, 5, 3, 4,
6, 1, 2, 5, 3, 4, 6, 1, 2, 4, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4,
6, 1, 2, 5, 3, 1, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4,
6, 3, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 6, 2, 4,
3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 2, 3, 1, 6, 5, 2, 4,
3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 5, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2,
5, 3, 4, 6, 1, 2, 4, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2,
5, 3, 1, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 3, 6,
5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 6, 2, 4, 3, 1, 6,
5, 2, 4, 3, 1, 6, 5, 2, 4, 3, 1, 2, 3, 1, 6, 5, 2, 4, 3, 1, 6,
5, 2, 4, 3, 1, 6, 5, 5, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4,
6, 1, 2, 4, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 1,
5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 3, 6, 5, 2, 4,
3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4, 6, 2, 4, 3, 1, 6, 5, 2, 4,
3, 1, 6, 5, 2, 4, 3, 1, 2, 3, 1, 6, 5, 2, 4, 3, 1, 6, 5, 2, 4,
3, 1, 6, 5, 5, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2,
4, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3, 4, 6, 1, 2, 5, 3), r1 = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("IGN",
"MAN", "SAC"), class = "factor"), r2 = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("MAN",
"SAC"), class = "factor"), s1 = structure(c(2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("endo",
"exo"), class = "factor"), s2 = structure(c(2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("endo",
"exo"), class = "factor"), cue = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("cued",
"uncued"), class = "factor"), value = c(282.29, 306.165, 350.79,
310.75, 244.96, 316.665, 262.71, 228.29, 252.335, 260, 271.54,
371.5, 258.415, 205.75, 300.92, 234.25, 239.5, 236.04, 280.67,
254.795, 264.33, 228.665, 261.295, 259.375, 226.29, 189.795,
262.625, 280.585, 341.67, 266.75, 195.71, 276.83, 224.865, 157,
249.295, 324.42, 297.09, 269.585, 385.835, 276.835, 267.205,
244.83, 279.585, 276.5, 286.085, 333.25, 299.665, 281.955, 388.375,
237.42, 284, 154.58, 302.71, 278.29, 158.25, 150.375, 174.125,
188, 146.865, 164.33, 247.83, 190.67, 187.125, 165.25, 160.245,
264.79, 157.54, 158.75, 165.315, 172.835, 184.205, 227.585, 143.625,
162.405, 190.295, 139.085, 165.005, 261.605, 211.25, 169.375,
173.25, 237.42, 251.75, 167.665, 157, 214.955, 172.075, 222.915,
127.96, 232.335, 173.825, 163, 149.835, 174.25, 144.185, 197.875,
209.57, 167.79, 143.5, 361.045, 135.75, 168.04, 247.415, 292.335,
271.56, 294.5, 253.915, 307.875, 227.585, 237.835, 229.625, 271.25,
215.125, 325.375, 240.635, 195.955, 290.335, 186.955, 235.695,
216.415, 284, 238.625, 226.665, 221.08, 248.705, 231.335, 195.25,
190.83, 237.705, 239.96, 275.665, 236.875, 185.5, 250.335, 161.465,
172.01, 266.5, 337.125, 291.04, 236.33, 360.71, 222.835, 256.295,
277.5, 250.305, 256.5, 255.675, 285.46, 259.875, 264.17, 401.165,
199.445, 316.46, 150.25, 281.455, 221.71, 158.955, 148.5, 166.775,
162.82, 128.18, 175.25, 213.83, 144.915, 212.135, 134.545, 155.545,
255.875, 147.835, 146.75, 210.98, 164, 161.265, 153.89, 140.29,
181.265, 161.55, 139.1, 167.83, 313.25, 167.045, 152.71, 134.54,
199.445, 234.455, 135.97, 172.01, 180.665, 142.31, 143.345, 125.96,
164.05, 156.335, 153.375, 139.665, 139.79, 137.05, 153.625, 149.125,
148.165, 165.08, 358.415, 157.085, 177.17, 336.09, 350.705, 357.46,
330.42, 303.17, 372.435, 287.59, 257, 270.92, 327.075, 318.54,
340.08, 324.59, 243.72, 331.465, 256.835, 251.5, 272.56, 321.375,
278.135, 309.36, 291.495, 334.045, 335.29, 227.715, 213.46, 288.95,
306.98, 331.365, 325.545, 237.68, 311.17, 284.095, 264.33, 302.715,
397.685, 318.515, 327, 411.46, 303.55, 333.735, 290.61, 305.875,
302.875, 303.29, 340.845, 334.475, 295, 399.82, 276.035, 314.25,
232.31, 266.92, 284.545, 186.5, 164.21, 247.175, 267.265, 223.86,
244.335, 258.385, 268.375, 242.25, 251.435, 233.335, 361.97,
221.29, 183.125, 287.865, 178.725, 203.5, 225.01, 177.45, 236.875,
263.045, 185.46, 185.115, 262.125, 229.36, 205.08, 245.945, 276.035,
260.455, 340.085, 264.33, 251.845, 229.1, 277.19, 188.085, 249.83,
252.86, 238.725, 220.625, 210.04, 205.73, 257.665, 245.89, 226.255,
216.125, 369, 211.125, 199.295, 318.515, 344.915, 324.475, 305.21,
306.5, 360.59, 316.795, 281.935, 275.79, 304.79, 311.785, 339.82,
348.26, 252.455, 310.87, 233.955, 280.47, 313.52, 328, 294.165,
289.435, 297.29, 279.955, 348.04, 254.21, 238.24, 280.125, 298.835,
337.345, 304.54, 252.58, 261.38, 240, 184.085, 290.835, 359.875,
319.035, 262.545, 368.635, 279.585, 285.03, 280.485, 307.21,
266.04, 264.75, 291.71, 290.295, 290.25, 365.085, 228.045, 288.885,
241.27, 271.045, 253.525, 201.835, 183.125, 210.62, 221.895,
218.17, 208.08, 218.54, 219.295, 291.64, 211, 207.165, 319.295,
218.08, 207.29, 225.215, 173.17, 177.29, 170.86, 184.085, 229.96,
227.725, 182.785, 171.75, 272.81, 202.835, 191.2, 209.835, 228.045,
241.625, 248.045, 184.085, 228.29, 235.045, 191.5, 180.585, 219.3,
230.71, 235.6, 205.985, 195.96, 182.715, 202.165, 217.57, 183.915,
247.485, 351.33, 180.455, 221.24, 273.96, 286.79, 292.075, 295.5,
257.125, 315.585, 240.67, 247.29, 250, 290.96, 263.29, 330.42,
311.045, 214.955, 300.29, 210.31, 238.79, 252.375, 298.75, 261.415,
296.335, 232.375, 299.91, 270.365, 231.21, 234.45, 297.665, 286.375,
367.625, 297.455, 221.92, 293.75, 227.295, 159.615, 256.5, 295.5,
301.3, 306.79, 363.665, 282.46, 288.455, 280.46, 302.79, 294.5,
283.33, 335.5, 285.71, 286.335, 388.33, 236.79, 290.5, 160.42,
283.415, 216.295, 150.085, 152.625, 226.37, 173.04, 157.125,
165.7, 261.79, 174.875, 182.795, 158.54, 154.005, 236.875, 149.545,
169.75, 222.14, 151.25, 179.46, 230.55, 149.75, 172.85, 165.555,
133.54, 141.71, 371.165, 177.29, 186.335, 186.545, 236.79, 266.33,
136.75, 159.615, 209.84, 172.2, 219.725, 148.625, 235.365, 199.46,
159.17, 176.915, 205.58, 131.035, 211.375, 221.125, 172.46, 178.335,
370.085, 152.335, 224.11, 250.335, 282.165, 265.9, 284.125, 245.415,
285.77, 217.125, 227.625, 249.375, 269.83, 231.415, 317.25, 305.625,
204.79, 292.125, 174.94, 228.845, 222.295, 280.75, 243.625, 239.625,
212.875, 238, 252.205, 213.54, 199.125, 266.5, 249.545, 275.67,
235.33, 196.935, 252, 215.21, 157.865, 282.625, 317.455, 299.27,
269.42, 343.54, 234.21, 274.42, 278.75, 265.915, 268.21, 242.875,
299.545, 259.955, 281.42, 386.21, 198.665, 247.04, 165.705, 257.29,
198.82, 215.585, 150.25, 157.165, 174.095, 146.89, 165.79, 245.335,
151.585, 170.085, 148.09, 157.795, 225.96, 164.54, 158.96, 159.98,
146.085, 174.46, 173.925, 122.455, 160.54, 157.835, 131.71, 156.875,
405.2, 171.295, 148.415, 132.585, 198.665, 232.625, 144.435,
157.865, 181.17, 175.015, 210.665, 148.75, 173.585, 178.625,
167, 138.28, 189.75, 131.775, 167.665, 167.125, 171.455, 144.25,
319.33, 140.5, 160.015, 345.58, 334.915, 323.25, 328.92, 274.25,
370.285, 311.37, 268.46, 245.125, 308.79, 313.96, 307.335, 351.555,
242.58, 320.375, 255.835, 260.725, 271.915, 305, 278.91, 271.18,
273.29, 310.47, 295.245, 234.46, 221.525, 268.83, 295.375, 285.665,
314.455, 238.65, 284.79, 255.935, 199.085, 299.71, 388.335, 332.515,
348.375, 436.25, 331.7, 330.625, 287.335, 359.665, 297.96, 287.21,
339.335, 343.425, 310.915, 413.465, 294.545, 352.275, 217.795,
265, 284.045, 190.265, 168.415, 234.725, 238.57, 198.72, 215.04,
244.22, 248.555, 222.58, 219.14, 217.42, 295.19, 190.79, 189.295,
246.445, 184.755, 233.3, 245.285, 191.04, 199.415, 268.01, 195.46,
210.585, 320.335, 242.25, 212.3, 272.635, 294.545, 292.955, 311.715,
199.085, 283.325, 197.34, 297.355, 226.84, 236.625, 276.8, 234.165,
232.5, 217.26, 188.21, 344.085, 242, 243.165, 202.33, 381.04,
196.33, 194.625, 312.93, 336.835, 345.5, 308.92, 328.96, 374.79,
286.585, 258.25, 280.125, 313.17, 314.29, 341.955, 249.19, 270.445,
316.75, 215.315, 265.91, 320.71, 330.65, 290.155, 295.415, 309.625,
297.03, 290.535, 267.785, 260.165, 294.375, 344.985, 366.77,
281.985, 245.665, 268.595, 242.25, 193.235, 298.04, 374.125,
330.63, 290.125, 407.625, 238.03, 300.335, 272.325, 303.125,
293.96, 324.95, 337.83, 281.5, 318.015, 395.42, 252.205, 299.425,
231.265, 261.46, 270.16, 190.335, 177, 211.705, 238.35, 236.09,
214.25, 277.015, 208.295, 253.535, 228.905, 212, 306.085, 226.415,
187.705, 228.365, 186.42, 215.8, 201.375, 189.705, 206.875, 219.06,
208.22, 195.18, 227.135, 230.835, 221.665, 239.625, 252.205,
248.915, 287.89, 193.235, 220.495, 207.65, 261.915, 177.61, 222.915,
226.125, 221.28, 207, 187.25, 163.15, 233.67, 248.04, 186.79,
255.425, 349.67, 223.125, 213.13)), .Names = c("id", "block",
"r1", "r2", "s1", "s2", "cue", "value"), row.names = c(1L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L,
32L, 33L, 34L, 35L, 36L, 37L, 39L, 40L, 41L, 42L, 43L, 44L, 45L,
46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 57L, 58L, 59L,
60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L,
73L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L,
87L, 88L, 89L, 90L, 91L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L,
101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 111L, 112L,
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L,
124L, 125L, 126L, 127L, 129L, 130L, 131L, 132L, 133L, 134L, 135L,
136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 147L,
148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L,
159L, 160L, 161L, 162L, 163L, 165L, 166L, 167L, 168L, 169L, 170L,
171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L,
183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L, 193L,
194L, 195L, 196L, 197L, 198L, 199L, 201L, 202L, 203L, 204L, 205L,
206L, 207L, 208L, 209L, 210L, 211L, 212L, 213L, 214L, 215L, 216L,
217L, 219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 237L, 238L, 239L, 240L,
241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L, 249L, 250L, 251L,
252L, 253L, 255L, 256L, 257L, 258L, 259L, 260L, 261L, 262L, 263L,
264L, 265L, 266L, 267L, 268L, 269L, 270L, 271L, 273L, 274L, 275L,
276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L, 284L, 285L, 286L,
287L, 288L, 289L, 291L, 292L, 293L, 294L, 295L, 296L, 297L, 298L,
299L, 300L, 301L, 302L, 303L, 304L, 305L, 306L, 307L, 309L, 310L,
311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L, 319L, 320L, 321L,
322L, 323L, 324L, 325L, 327L, 328L, 329L, 330L, 331L, 332L, 333L,
334L, 335L, 336L, 337L, 338L, 339L, 340L, 341L, 342L, 343L, 345L,
346L, 347L, 348L, 349L, 350L, 351L, 352L, 353L, 354L, 355L, 356L,
357L, 358L, 359L, 360L, 361L, 363L, 364L, 365L, 366L, 367L, 368L,
369L, 370L, 371L, 372L, 373L, 374L, 375L, 376L, 377L, 378L, 379L,
381L, 382L, 383L, 384L, 385L, 386L, 387L, 388L, 389L, 390L, 391L,
392L, 393L, 394L, 395L, 396L, 397L, 399L, 400L, 401L, 402L, 403L,
404L, 405L, 406L, 407L, 408L, 409L, 410L, 411L, 412L, 413L, 414L,
415L, 417L, 418L, 419L, 420L, 421L, 422L, 423L, 424L, 425L, 426L,
427L, 428L, 429L, 430L, 431L, 432L, 433L, 435L, 436L, 437L, 438L,
439L, 440L, 441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L, 449L,
450L, 451L, 453L, 454L, 455L, 456L, 457L, 458L, 459L, 460L, 461L,
462L, 463L, 464L, 465L, 466L, 467L, 468L, 469L, 471L, 472L, 473L,
474L, 475L, 476L, 477L, 478L, 479L, 480L, 481L, 482L, 483L, 484L,
485L, 486L, 487L, 489L, 490L, 491L, 492L, 493L, 494L, 495L, 496L,
497L, 498L, 499L, 500L, 501L, 502L, 503L, 504L, 505L, 507L, 508L,
509L, 510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L,
520L, 521L, 522L, 523L, 525L, 526L, 527L, 528L, 529L, 530L, 531L,
532L, 533L, 534L, 535L, 536L, 537L, 538L, 539L, 540L, 541L, 543L,
544L, 545L, 546L, 547L, 548L, 549L, 550L, 551L, 552L, 553L, 554L,
555L, 556L, 557L, 558L, 559L, 561L, 562L, 563L, 564L, 565L, 566L,
567L, 568L, 569L, 570L, 571L, 572L, 573L, 574L, 575L, 576L, 577L,
579L, 580L, 581L, 582L, 583L, 584L, 585L, 586L, 587L, 588L, 589L,
590L, 591L, 592L, 593L, 594L, 595L, 597L, 598L, 599L, 600L, 601L,
602L, 603L, 604L, 605L, 606L, 607L, 608L, 609L, 610L, 611L, 612L,
613L, 615L, 616L, 617L, 618L, 619L, 620L, 621L, 622L, 623L, 624L,
625L, 626L, 627L, 628L, 629L, 630L, 631L, 633L, 634L, 635L, 636L,
637L, 638L, 639L, 640L, 641L, 642L, 643L, 644L, 645L, 646L, 647L,
648L, 649L, 651L, 652L, 653L, 654L, 655L, 656L, 657L, 658L, 659L,
660L, 661L, 662L, 663L, 664L, 665L, 666L, 667L, 669L, 670L, 671L,
672L, 673L, 674L, 675L, 676L, 677L, 678L, 679L, 680L, 681L, 682L,
683L, 684L, 685L, 687L, 688L, 689L, 690L, 691L, 692L, 693L, 694L,
695L, 696L, 697L, 698L, 699L, 700L, 701L, 702L, 703L, 705L, 706L,
707L, 708L, 709L, 710L, 711L, 712L, 713L, 714L, 715L, 716L, 717L,
718L, 719L, 720L, 721L, 723L, 724L, 725L, 726L, 727L, 728L, 729L,
730L, 731L, 732L, 733L, 734L, 735L, 736L, 737L, 738L, 739L, 741L,
742L, 743L, 744L, 745L, 746L, 747L, 748L, 749L, 750L, 751L, 752L,
753L, 754L, 755L, 756L, 757L, 759L, 760L, 761L, 762L, 763L, 764L,
765L, 766L, 767L, 768L, 769L, 770L, 771L, 772L, 773L, 774L, 775L,
777L, 778L, 779L, 780L, 781L, 782L, 783L, 784L, 785L, 786L, 787L,
788L, 789L, 790L, 791L, 792L, 793L, 795L, 796L, 797L, 798L, 799L,
800L, 801L, 802L, 803L, 804L, 805L, 806L, 807L, 808L, 809L, 810L,
811L, 813L, 814L, 815L, 816L, 817L, 818L, 819L, 820L, 821L, 822L,
823L, 824L, 825L, 826L, 827L, 828L, 829L, 831L, 832L, 833L, 834L,
835L, 836L, 837L, 838L, 839L, 840L, 841L, 842L, 843L, 844L, 845L,
846L, 847L, 849L, 850L, 851L, 852L, 853L, 854L, 855L, 856L, 857L,
858L, 859L, 860L, 861L, 862L, 863L, 864L), class = "data.frame")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment