Last active
June 22, 2018 20:13
-
-
Save mikeemoo/b4affe711d56bd9828e8db7ce73ae13c to your computer and use it in GitHub Desktop.
fast-style-transfer-tensorflow-js
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import * as tf from "@tensorflow/tfjs-core"; | |
const CKPTSDIR = | |
document.URL.substr(0, document.URL.lastIndexOf("/")) + "/ckpts/"; | |
export const loadStyle = (id, ckptsDir = CKPTSDIR) => | |
fetch(ckptsDir + id + "/manifest.json") | |
.then(r => r.json()) | |
.then(manifest => { | |
const variableNames = Object.keys(manifest); | |
return Promise.all( | |
variableNames.map(name => | |
fetch(ckptsDir + id + "/" + name) | |
.then(r => r.arrayBuffer()) | |
.then(values => | |
tf.Tensor.make(manifest[name].shape, { | |
values: new Float32Array(values) | |
}) | |
) | |
) | |
).then(variables => | |
variables.reduce( | |
(acc, item, index) => (acc[variableNames[index]] = item) && acc, | |
{} | |
) | |
); | |
}); | |
export const memory = () => console.log(tf.memory()); | |
export const disposeStyle = style => | |
Object.values(style).forEach(s => s.dispose()); | |
const pipe = (...ops) => x => ops.reduce((prev, func) => func(prev), x); | |
export const predict = (image, style) => | |
tf.tidy(() => | |
pipe( | |
image => tf.fromPixels(image).toFloat(), | |
convLayer(style, 1, true, 0), | |
convLayer(style, 2, true, 3), | |
convLayer(style, 2, true, 6), | |
residualBlock(style, 9), | |
residualBlock(style, 15), | |
residualBlock(style, 21), | |
residualBlock(style, 27), | |
residualBlock(style, 33), | |
convTransposeLayer(style, 64, 2, 39), | |
convTransposeLayer(style, 32, 2, 42), | |
convLayer(style, 1, false, 45), | |
input => tf.tanh(input), | |
input => tf.mul(tf.scalar(150), input), | |
input => tf.add(tf.scalar(255 / 2), input), | |
input => tf.clipByValue(input, 0, 255) | |
)(image) | |
); | |
const varName = varId => `Variable${varId > 0 ? `_${varId.toString()}` : ``}`; | |
const convLayer = (style, strides, relu, varId) => | |
tf.tidy(() => | |
pipe( | |
input => tf.conv2d(input, style[varName(varId)], 1, strides), | |
instanceNorm(style, varId + 1), | |
input => (relu ? tf.relu(input) : input) | |
) | |
); | |
const convTransposeLayer = (style, numFilters, strides, varId) => input => { | |
const [height, width] = input.shape; | |
const newRows = height * strides; | |
const newCols = width * strides; | |
const newShape = [newRows, newCols, numFilters]; | |
return tf.tidy(() => | |
pipe( | |
input => | |
tf.conv2dTranspose( | |
input, | |
style[varName(varId)], | |
newShape, | |
strides, | |
"same" | |
), | |
instanceNorm(style, varId + 1), | |
tf.relu | |
)(input) | |
); | |
}; | |
const residualBlock = (style, varId) => input => | |
tf.tidy(() => | |
pipe( | |
convLayer(style, 1, true, varId), | |
convLayer(style, 1, false, varId + 3), | |
i => tf.addStrict(i, input) | |
)(input) | |
); | |
const instanceNorm = (style, varId) => input => | |
tf.tidy(() => { | |
const [height, width, inDepth] = input.shape; | |
const moments = tf.moments(input, [0, 1]); | |
const mu = moments.mean; | |
const sigmaSq = moments.variance; | |
const shift = style[varName(varId)]; | |
const scale = style[varName(varId + 1)]; | |
const epsilon = 1e-3; | |
const normalized = tf.div( | |
tf.sub(input, mu), | |
tf.sqrt(tf.add(sigmaSq, tf.scalar(epsilon))) | |
); | |
const shifted = tf.add(tf.mul(scale, normalized), shift); | |
return shifted.as3D(height, width, inDepth); | |
}); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment